K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2018

Ta có \(a+b+c+d=0\Leftrightarrow a+c=-\left(b+d\right)\Leftrightarrow\left(a+c\right)^3=\left[-\left(b+d\right)\right]^3\Leftrightarrow a^3+3a^2c+3ac^2+c^3=-b^3-3b^2d-3bd^2-d^3\Leftrightarrow a^3+b^3+c^3+d^3=-3a^2c-3ac^2-3b^2d-3bd^2\Leftrightarrow a^3+b^3+c^3+d^3=-3ac\left(a+c\right)-3bd\left(b+d\right)\Leftrightarrow a^3+b^3+c^3+d^3=3ac\left(b+d\right)-3bd\left(b+d\right)\Leftrightarrow a^3+b^3+c^3+d^3=3\left(b+d\right)\left(ac-bd\right)\)Vậy \(a+b+c+d=0\) thì \(a^3+b^3+c^3+d^3=3\left(b+d\right)\left(ac-bd\right)\)

7 tháng 12 2016

nho moi nguoi tl giup e ạ

31 tháng 12 2016

Theo đề bài ta có \

\(\hept{\begin{cases}a>b;c>d\\ab=cd\\a>c\end{cases}}\)

\(\Rightarrow c>d>b\)(vì nếu \(d\le b\)thì \(ab>cd\))

Ta cần chứng minh

\(a+b>c+d\)

\(\Leftrightarrow\frac{cd}{b}+b>c+d\)

\(\Leftrightarrow cd+b^2>cb+db\)

\(\Leftrightarrow\left(cd-cb\right)+\left(b^2-db\right)>0\)

\(\Leftrightarrow\left(d-b\right)\left(c-b\right)>0\)(đúng)

\(\Rightarrow\)ĐPCM