K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 10 2019

Lời giải:
Từ \(b^2=ac; c^2=bd\Rightarrow \frac{b}{c}=\frac{a}{b}=\frac{c}{d}\)

Đặt \(\frac{b}{c}=\frac{a}{b}=\frac{c}{d}=t\Rightarrow b=ct; a=bt; c=dt\)

Khi đó:

\(\frac{a^2+b^2+c^2}{b^2+c^2+d^2}=\frac{(bt)^2+(ct)^2+(dt)^2}{b^2+c^2+d^2}=t^2(1)\)

\(\frac{(a+b+c)^2}{(b+c+d)^2}=\frac{(bt+ct+dt)^2}{(b+c+d)^2}=\frac{t^2(b+c+d)^2}{(b+c+d)^2}=t^2(2)\)

\(\frac{a}{d}=\frac{bt}{d}=\frac{ct.t}{d}=\frac{dt.t.t}{d}=t^3\)

Vậy \(\frac{a^2+b^2+c^2}{b^2+c^2+d^2}=\frac{(a+b+c)^2}{(b+c+d)^2}\) nhưng không bằng $\frac{a}{d}$ (trừ phi $t=1$)

AH
Akai Haruma
Giáo viên
31 tháng 10 2019

Đặng Quốc Huy: bạn đọc bài giải của mình sẽ hiểu là đề của bạn sai đấy. Chỉ có dấu "=" đầu tiên đúng thôi. Vì 2 phân thức đầu tiên có giá trị $t^2$, còn $\frac{a}{d}=t^3$ nên đâu thể khẳng định 3 phân thức bằng nhau, trừ phi $t=1$

30 tháng 10 2019

Ta có: b2 = ac

=> a/b = b/c (1)

Ta có: c2 = bd

=> b/c = c/d (2)

Từ (1) và (2)

=> a/b = b/c = c/d

=> a2/ b2 = c2 / b2 = c2/d2 = ( a+ b+ c )2/ (b+d+c )2 =a2 +b2 +c2 / b2 + c2 +d2 (3)

( tính chất dãy tỉ số bằng nhau)

Ta có: a/b = b/c = c/d

=> a/b . b/c . c/d = (a/b)3 = a.b.c/b.d.c = a/d (4)

Từ (3) và (4)

=> ( a+ b+ c )2/ (b+d+c )2 =a2 +b2 +c2 / b2 + c2 +d2 = a/d

chúc bạn hok tốt haha

31 tháng 10 2019

này Trần Bình Như, cho mk hỏi tại sao lại là \(\left(\frac{a}{b}\right)^3\)

NV
30 tháng 10 2019

Đề bài sai nhé

Đẳng thức này mới đúng: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}=\frac{a}{d}\)

NV
30 tháng 10 2019

\(\left\{{}\begin{matrix}b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\\c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\end{matrix}\right.\) \(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

\(\Rightarrow\frac{a}{d}=\frac{abc}{bcd}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

24 tháng 11 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\Rightarrow a=bk;c=dk\)

1)Xét \(VT=\frac{\left(bk\right)^2+bkdk}{\left(dk\right)^2-bkdk}=\frac{b^2k^2+bdk^2}{d^2k^2-bdk^2}=\frac{k^2\left(b^2+bd\right)}{k^2\left(d^2-bd\right)}=\frac{b^2+bd}{d^2-bd}=VP\)

Suy ra Đpcm

2)Xét \(VT=\frac{3\left(bk\right)^2+\left(dk\right)^2}{3b^2+d^2}=\frac{3b^2k^2+d^2k^2}{3b^2+d^2}=\frac{k^2\left(3b^2+d^2\right)}{3b^2+d^2}=k^2\left(1\right)\)

Xét \(VP=\frac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\frac{k^2\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\left(2\right)\)

Từ (1) và (2) suy ra Đpcm

 

1 tháng 11 2018

Câu hỏi của Lê Thị Trà MI - Toán lớp 7 - Học toán với OnlineMath Bạn xem bài làm tương tự ở link này nhé!

9 tháng 8 2017

Đặt:  \(\frac{a}{b}=\frac{c}{d}=k\) 

==> a = b.k

       c = d.k 

Ta có : \(\frac{a^2+b^2}{c^2+d^2}\) = \(\frac{b^2.k^2+b^2}{d^2.k^2+d^2}\) = \(\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}\) = \(\frac{b^2}{d^2}\) (1)

\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\) = \(\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}\) = \(\frac{\left[b\left(k-1\right)\right]^2}{\left[d\left(k-1\right)\right]^2}\) = \(\frac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}\) = \(\frac{b^2}{d^2}\) (2)

Từ (1) và (2) ==> \(\frac{a^2+b^2}{c^2+d^2}\) = \(\frac{\left(a-b\right)^2}{\left(c-d^{ }\right)^2}\) (đpcm) 

Good for you  haha

     

30 tháng 9 2019

cái này dễ mà

30 tháng 9 2019

kiến thức trong sách í