Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|x-a\right|+\left|x-b\right|+\left|x-c\right|+\left|x-d\right|\ge0\)
Dấu ''='' xảy ra <=> x = a ; x = b ; x = c ; x = d
hay a = b = c = d = x (*)
Vậy GTNN A là 0 <=> (*)
/:là giá trị tuyệt đối đấy ạ
mọi người giải hộ mình bài này với
Ta có:
\(\left|x-a\right|\ge0\) với mọi \(x,a\)
\(\left|x-b\right|\ge0\) với mọi \(x,b\)
\(\left|x-c\right|\ge0\) với mọi \(x,c\)
\(\left|x-d\right|\ge0\) với mọi \(x,d\)
\(\Rightarrow\left|x-a\right|+\left|x-b\right|+\left|x-c\right|+\left|x-d\right|\ge0\) với mọi \(x,a,b,c,d\)
\(\Rightarrow A\ge0\)
Dấu "\(=\)" xảy ra khi \(\left\{{}\begin{matrix}\left|x-a\right|=0\\\left|x-b\right|=0\\\left|x-c\right|=0\\\left|x-d\right|=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-a=0\\x-b=0\\x-c=0\\x-d=0\end{matrix}\right.\)\(\Rightarrow a=b=c=d=x\)
Vậy \(MinA=0\) khi \(a=b=c=d=x.\)
Áp dụng bất đẳng thức |m|+ |n|≥ |m + n| .Dấu = xảy ra khi m,n cùng dấu
A ≥ |x − a + x − b|+ |x − c + x − d| = |2x − a − b|+ |c + d − 2x| ≥ |2x − a − b − 2x + c + d| =|c + d − a − b|
Dấu = xảy ra khi x − a và x − b cùng dấu hay(x ≤ a hoặc x ≥ b)
x − c và x − d cùng dấu hay(x ≤ c hoặc x ≥ d)
2x − a − b và c + d − 2x cùng dấu hay (x + b ≤ 2x ≤ c + d)
Vậy Min A =c+d-a-b khi b ≤ x ≤ c
~ Học tốt ~ K cho mk nha. Thank you.
1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)
Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Nếu a + b + c + d = 0
=> a + b = -(c + d)
=> b + c = (-a + d)
=> c + d = -(a + b)
=> d + a = (-b + c)
Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4
Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)
Khi đó M = 1 + 1 + 1 + 1 = 4
2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)
Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)
b) 72x + 72x + 3 = 344
=> 72x + 72x.73 = 344
=> 72x.(1 + 73) = 344
=> 72x = 1
=> 72x = 70
=> 2x = 0 => x = 0
c) Ta có :
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)
=> 2x + 2 = 14 => x = 6 ;
2y - 4 = 6 => y = 5 ;
6 + 5 + z = 17 => z = 6
Vậy x = 6 ; y = 5 ; z = 6
3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau)
=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;
Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0
Vậy c = 0 hoặc b = 0
c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau)
=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)
Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)
Vậy P = 8
2. b) \(7^{2x}+7^{2x+3}=344\)
\(7^{2x}\cdot\left(1+7^3\right)=344\)
\(7^{2x}\cdot\left(1+343\right)=344\)
\(7^{2x}\cdot344=344\)
\(7^{2x}=1\)
\(7^{2x}=7^0\)
\(2x=0\)
\(x=0\)
Ta có: A ≥ |x-a+x-b|+|x-c+x-d|= |2x-a-b|+|c+d-2x| ≥ |2x-a-b-2x+c+d| = |c+d-a-b|
Dấu " = " xảy ra khi x-a và x-b cùng dấu hay x≤ a hoặc b ≤ x
x-c và x-b cùng dấu hay x≤ c hoặc d ≤ x
2x-a-b và c+d-2x cùng dấu hay x+b≤ 2x ≤ c+d
vậy GTNN của A=c+d-a-b khi b ≤ x ≤ c