K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

nhấn vào đây nha: [Đại số] Một bài toán chứng minh sự tồn tại. | HOCMAI Forum - Cộng đồng học sinh Việt Nam

hì hì ok nha!! 7655685795325325454364561253454364565464575678568788978676

5 tháng 7 2016

Ta có : \(x=2a+b-2\sqrt{cd};y=2b+c-2\sqrt{ad};z=2c+d-2\sqrt{ab};t=2d+a-2\sqrt{bc}\)

\(\Rightarrow x+z=2a+b-2\sqrt{cd}+2c+d-2\sqrt{ab}=\left(a-2\sqrt{ab}+b\right)+\left(c-2\sqrt{cd}+d\right)+a+c=\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{c}-\sqrt{d}\right)^2+a+c>0\)

\(\Rightarrow x+z>0\) => Một trong hai số x và z phải có ít nhất một số dương (1) . Thật vậy , giả sử x<0 , z<0 => x+z<0 => vô lí.

Tương tự ta cũng có : \(y+t=\left(\sqrt{a}-\sqrt{d}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+b+d>0\) \(\Rightarrow y+t>0\) => Một trong hai số y và t phải có ít nhất một số dương (2)

Từ (1) và (2) ta có điều phải chứng minh.

cộng 4 biểu thức lại ta có:

\(\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(c-2\sqrt{ca}+a\right)+\left(d-2\sqrt{da}+a\right)+a+b+c+d\)

\(=\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{d}\right)^2+\left(\sqrt{d}-\sqrt{a}\right)^2+a+b+c+d>0\)

g/s 4 biểu thức đó đều âm=>tổng của chúng âm

=>1 trong 4 biểu thức có 1 biểu thức là số dương

11 tháng 8 2020

chỉ có 1 biểu thức là số dương.

26 tháng 10 2019

Áp dụng BĐT Bunhia- cốp -xki ta có

\(M=\left(\sqrt{a}+\sqrt{b}\right)^2\le\left(1^2+1^2\right)\left(a+b\right)\le2\)

Vậy maxM =2 \(\Leftrightarrow a=b=\frac{1}{2}\)

15 tháng 5 2019

Cân bằng hệ số:

Giả sư: \(2a^2+ab+2b^2=x\left(a+b\right)^2+y\left(a-b\right)^2\) (ta đi tìm x ; y)

\(=xa^2+x.2ab+xb^2+ya^2-y.2ab+yb^2\)

\(=\left(x+y\right)a^2+2\left(x-y\right)ab+\left(x+y\right)b^2\)

Đồng nhất hệ số ta được: \(\hept{\begin{cases}x+y=2\\2\left(x-y\right)=1\end{cases}\Leftrightarrow}\hept{\begin{cases}2x+2y=4\\2x-2y=1\end{cases}}\Leftrightarrow4x=5\Leftrightarrow x=\frac{5}{4}\Leftrightarrow y=\frac{3}{4}\)

Do vậy: \(2a^2+ab+2b^2=\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{5}{4}\left(a+b\right)^2\)

Tương tự với hai BĐT còn lại,thay vào,thu gọn và đặt thừa số chung,ta được:

\(VT\ge\sqrt{\frac{5}{4}}.2.\left(a+b+c\right)=\sqrt{\frac{5}{4}}.2.3=3\sqrt{5}\) (đpcm)

Dấu "=" xảy ra khi a = b =c = 1

14 tháng 5 2019

Hoa 

cả

mắt

28 tháng 10 2016

Xét tổng 2 số:

\(\left(2a+b-2\sqrt{cd}\right)+\left(2c+d-2\sqrt{ab}\right)=\left(a+b-2\sqrt{ab}\right)+\left(c+d-2\sqrt{cd}\right)+a+c\)

\(=\left(a-\sqrt{ab}+b-\sqrt{ab}\right)+\left(c-\sqrt{cd}+d-\sqrt{cd}\right)+a+c\)

\(=\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{c}-\sqrt{d}\right)^2+a+c\) > 0

Do đó, tồn tại 1 số dương trong 2 số \(2a+b-2\sqrt{cd}\)\(2c+d-2\sqrt{ab}\)(đpcm)

 

AH
Akai Haruma
Giáo viên
1 tháng 12 2019

Lời giải:

Áp dụng BĐT AM-GM dạng $x^2+y^2\geq \frac{(x+y)^2}{2}$ ta có:

\(2a^2+ab+2b^2=\frac{4a^2+2ab+4b^2}{2}=\frac{(a+b)^2+3(a^2+b^2)}{2}\geq \frac{(a+b)^2+\frac{3}{2}(a+b)^2}{2}=\frac{5}{4}(a+b)^2\)

\(\Rightarrow \sqrt{2a^2+ab+2b^2}\geq \frac{\sqrt{5}}{2}(a+b)\)

Hoàn toàn tương tự:

\( \sqrt{2b^2+bc+2c^2}\geq \frac{\sqrt{5}}{2}(b+c); \sqrt{2c^2+ac+2a^2}\geq \frac{\sqrt{5}}{2}(a+c)\)

Cộng theo vế:

\(\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+bc+2c^2}+\sqrt{2c^2+ca+2a^2}\geq \sqrt{5}(a+b+c)=\sqrt{5}\)

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$