Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cộng x với z
ra HĐT suy ra
\(x+z=\left(a-b\right)^2+\left(c-d\right)^2+a^2+c^2\)
do a,b,c,d>0 nên x+z>0 vậy 1 trong 2 số có ít nhất 1 số dương
tương tự tự làm nhé
\(x+z=2a^2+b^2-2cd+2c^2+d^2-2ab=\left(a-b\right)^2+\left(c-d\right)^2+a^2+c^2>0\)
Nên có ít nhất 1 số dương
Tương tự:\(y+t>0\) nên có 1 số dương
Hay có đpcm
a) Ta có:
\(\frac{2a+b}{a+b}+\frac{2b+c}{b+c}+\frac{2c+d}{c+d}+\frac{2d+a}{d+a}=6\)
\(\Leftrightarrow\left[\left(\frac{2a+b}{a+b}-1\right)+\left(\frac{2b+c}{b+c}-1\right)-1\right]+\left[\left(\frac{2c+d}{c+d}-1\right)+\left(\frac{2d+a}{d+a}-1\right)-1\right]=0\)
\(\Leftrightarrow\left(\frac{a}{a+b}+\frac{b}{b+c}-1\right)+\left(\frac{c}{c+d}+\frac{d}{d+a}-1\right)=0\)
\(\Leftrightarrow\left(\frac{a.\left(b+c\right)}{\left(a+b\right).\left(b+c\right)}+\frac{b.\left(a+b\right)}{\left(a+b\right).\left(b+c\right)}-\frac{\left(a+b\right).\left(b+c\right)}{\left(a+b\right).\left(b+c\right)}\right)+\left(\frac{c.\left(d+a\right)}{\left(c+d\right).\left(d+a\right)}+\frac{d.\left(c+d\right)}{\left(c+d\right).\left(d+a\right)}-\frac{\left(c+d\right).\left(d+a\right)}{\left(c+d\right).\left(d+a\right)}\right)=0\)
\(\Leftrightarrow\left(\frac{ab+ac}{\left(a+b\right).\left(b+c\right)}+\frac{ab+b^2}{\left(a+b\right).\left(b+c\right)}-\frac{ab+ac+b^2+bc}{\left(a+b\right).\left(b+c\right)}\right)+\left(\frac{cd+ac}{\left(c+d\right).\left(d+a\right)}+\frac{cd+d^2}{\left(c+d\right).\left(d+a\right)}-\frac{cd+ac+d^2+ad}{\left(c+d\right).\left(d+a\right)}\right)=0\)
\(\Leftrightarrow\left(\frac{ab+ac+ab+b^2-ab-ac-b^2-bc}{\left(a+b\right).\left(b+c\right)}\right)+\left(\frac{cd+ac+cd+d^2-cd-ac-d^2-ad}{\left(c+d\right).\left(d+a\right)}\right)=0\)
\(\Leftrightarrow\frac{ab-bc}{\left(a+b\right).\left(b+c\right)}+\frac{cd-ad}{\left(c+d\right).\left(d+a\right)}=0\)
\(\Leftrightarrow\frac{ab-bc}{\left(a+b\right).\left(b+c\right)}=-\frac{cd-ad}{\left(c+d\right).\left(d+a\right)}\)
\(\Leftrightarrow\frac{ab-bc}{\left(a+b\right).\left(b+c\right)}=\frac{ad-cd}{\left(c+d\right).\left(d+a\right)}\)
\(\Leftrightarrow\frac{b.\left(a-c\right)}{\left(a+b\right).\left(b+c\right)}=\frac{d.\left(a-c\right)}{\left(c+d\right).\left(d+a\right)}\)
\(\Leftrightarrow\frac{b}{\left(a+b\right).\left(b+c\right)}=\frac{d}{\left(c+d\right).\left(d+a\right)}\) (vì \(a;b;c;d\) là số nguyên dương).
\(\Leftrightarrow b\left(c+d\right).\left(d+a\right)=d\left(a+b\right).\left(b+c\right)\)
\(\Leftrightarrow\left(bc+bd\right).\left(d+a\right)=\left(ad+bd\right).\left(b+c\right)\)
\(\Leftrightarrow bcd+abc+bd^2+abd=abd+acd+b^2d+bcd\)
\(\Leftrightarrow bd^2+abc=b^2d+acd\)
\(\Leftrightarrow bd^2-b^2d=acd-abc\)
\(\Leftrightarrow bd.\left(d-b\right)=ac.\left(d-b\right)\)
\(\Leftrightarrow bd.\left(d-b\right)-ac.\left(d-b\right)=0\)
\(\Leftrightarrow\left(d-b\right).\left(bd-ac\right)=0\)
Vì \(a;b;c;d\) là số nguyên dương.
\(\Rightarrow d-b>0\)
\(\Rightarrow d-b\ne0.\)
\(\Leftrightarrow bd-ac=0\)
\(\Leftrightarrow bd=ac.\)
Lại có:
\(A=abcd\)
\(\Rightarrow A=ac.bd\)
\(\Rightarrow A=ac.ac\)
\(\Rightarrow A=\left(ac\right)^2.\)
\(\Rightarrow A=abcd\) là số chính phương (đpcm).
Chúc bạn học tốt!