Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì -1 hơn 1 hai số cho nên;
a) a/b và c/d ^2 =ab/cd hơn kém nhau 2
b) dựa theo tính chất kết hợp (a+b/c+d ) ^3 = a ^3 ...
a.d = b.c ⇒ \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{5b}{5d}\) = \(\dfrac{3a}{3c}=\dfrac{2b}{2d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}=\dfrac{2a}{2c}=\dfrac{5b}{5d}=\dfrac{2a+5b}{2c+5d}\) (1)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}=\dfrac{3a}{3c}=\dfrac{2b}{2d}=\dfrac{3a-2b}{2c-2d}\) (2)
Từ (1) và(2) ta có:
\(\dfrac{2a+5b}{2c+5d}\) = \(\dfrac{3a-2b}{3c-2d}\)(đpcm)
a.d = b.c ⇒ \(\dfrac{a}{c}=\dfrac{b}{d}\) ⇒ \(\dfrac{a.b}{c.d}\) = \(\dfrac{a^2}{c^2}\) = \(\dfrac{b^2}{d^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a.b}{c.d}=\dfrac{a^2}{c^2}\) = \(\dfrac{b^2}{d^2}\) = \(\dfrac{a^2+b^2}{c^2+d^2}\) (đpcm)
giả sử \(\frac{a}{b}=\frac{c}{d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{2b}{2d}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{2a+b}{2c+d}=\frac{a-2b}{c-2d}\)
\(=>\frac{a}{c}=\frac{b}{d}=\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\)
vậy \(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}=>\frac{a}{b}=\frac{c}{d}\left(dpcm\right)\)
p/s: ko chắc lắm mong là ko sai =]
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}-2=\frac{c}{d}-2\Rightarrow\frac{a-2b}{b}=\frac{c-2d}{d}\)