Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài n t vừa làm mà, vào link này nhé
https://olm.vn/hoi-dap/question/1129328.html
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}+\frac{1}{c}\ge4\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)\ge2\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge1\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z\ge1\)
\(P=\sqrt{x^2+2y^2}+\sqrt{y^2+2z^2}+\sqrt{z^2+2x^2}\)
\(\Rightarrow P\ge\sqrt{\frac{\left(x+2y\right)^2}{3}}+\sqrt{\frac{\left(y+2z\right)^2}{3}}+\sqrt{\frac{\left(z+2x\right)^2}{3}}\)
\(\Rightarrow P\ge\frac{1}{\sqrt{3}}\left(3x+3y+3z\right)\ge\frac{3}{\sqrt{3}}=\sqrt{3}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\) hay \(a=b=c=3\)
Ta luôn có :
\(\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2\ge0\forall a,b\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\)
\(\Leftrightarrow2\left(\frac{1}{a}+\frac{1}{b}\right)\ge\frac{2}{\sqrt{ab}}+\frac{1}{a}+\frac{1}{b}\)
\(\Leftrightarrow\frac{2\left(a+b\right)}{ab}\ge\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\right)^2\)
\(\Leftrightarrow\sqrt{\frac{2\left(a+b\right)}{ab}}\ge\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế :
\(\sqrt{2}\left(\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{b+c}{bc}}+\sqrt{\frac{a+c}{ac}}\right)\)
\(\ge2\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\)
\(\Leftrightarrow\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{b+c}{bc}}+\sqrt{\frac{a+c}{ac}}\ge\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)
Chúc bạn học tốt !!!
Đặt \(\frac{1}{\sqrt{a}}=x,\frac{1}{\sqrt{b}}=y,\frac{1}{\sqrt{c}}\)=z
Thay vào ta có:\(\sqrt{2}\)(x+y+x)\(\le\)\(\sqrt{\left(x^2+y^2\right)}+\sqrt{x^2+z^2}+\sqrt{\left(y^2+z^2\right)}\)
Ta có bất đẳng thức sau A: (m2+n2)(p2+q2)\(\ge\)(mp+nq)2 dễ dàng chứng mình bằng cách khai triển
áp dụng bdt A với m=x,n=z,p=\(\sqrt{2}\).q=\(\sqrt{2}\) ta được
\(\sqrt{\frac{\left(x^2+z^2\right)\left(\sqrt{2}^2+\sqrt{2}^2\right)}{4}}\ge\sqrt{\left(x\sqrt{2}+z\sqrt{2}\right)^2}\)/2=\(\frac{\sqrt{2}\left(x+y\right)}{2}\)
Tương tự với cái phần tử còn lại ta được điều cần cm
Đặt ⎧⎪⎨⎪⎩a+b−c=xb+c−a=yc+a−b=z(x,y,z>0){a+b−c=xb+c−a=yc+a−b=z(x,y,z>0)
⇒⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩a=z+x2b=x+y2c=y+z2⇒{a=z+x2b=x+y2c=y+z2
⇒√a(1b+c−a−1√bc)=√2(z+x)2(1y−2√(x+y)(y+z))≥√x+√z2(1y−2√xy+√yz)=√x+√z2y−1√y⇒a(1b+c−a−1bc)=2(z+x)2(1y−2(x+y)(y+z))≥x+z2(1y−2xy+yz)=x+z2y−1y
Tương tự
⇒∑√a(1b+c−a−1√bc)≥∑√x+√z2y−∑1√y⇒∑a(1b+c−a−1bc)≥∑x+z2y−∑1y
⇒VT≥∑[x√x(y+z)]2xyz−∑√xy√xyz≥2√xyz(x+y+z)2xyz−x+y+z√xyz≐x+y+z√xyz−x+y+z√xyz=0⇒VT≥∑[xx(y+z)]2xyz−∑xyxyz≥2xyz(x+y+z)2xyz−x+y+zxyz≐x+y+zxyz−x+y+zxyz=0
(∑√xy≤x+y+z,x√x(y+z)≥2x√xyz)(∑xy≤x+y+z,xx(y+z)≥2xxyz)
dấu = ⇔x=y=z⇔a=b=c
Từ giả thiết, ta có
\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=4\Rightarrow a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)=4\)
=>\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1\)
Tháy vào, ta có M=\(\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+a}{\sqrt{a}+\sqrt{b}}+\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+b}{\sqrt{b}+\sqrt{c}}+\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+c}{\sqrt{a}+\sqrt{c}}\)
=\(\frac{\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}+\frac{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)}{\sqrt{b}+\sqrt{c}}+\frac{\left(\sqrt{c}+\sqrt{a}\right)\left(\sqrt{c}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{c}}\)
=\(\sqrt{a}+\sqrt{c}+\sqrt{b}+\sqrt{a}+\sqrt{c}+\sqrt{b}=2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)=4\)
Vậy M=4
^_^