Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{a-\left(c-b\right)}{b-c}+\frac{b-\left(a-c\right)}{c-a}+\frac{c-\left(b-a\right)}{a-b}=3\)
\(\Leftrightarrow\frac{a+\left(b-c\right)}{b-c}-1+\frac{b+\left(c-a\right)}{c-a}-1+\frac{c+\left(a-b\right)}{a-b}-1=0\)
\(\Leftrightarrow\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
\(\Rightarrow\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\right)=0\)
\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(a-c\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a+b}{\left(b-c\right)\left(c-a\right)}+\frac{a+c}{\left(b-c\right)\left(a-b\right)}+\frac{b+c}{\left(c-a\right)\left(a-b\right)}=0\)
\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a^2-b^2+c^2-a^2+b^2-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)
\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
Từ gt ta có : \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)0
Từ đó suy ra điều phải chứng minh
Lời giải:
Đặt \((\frac{a-b}{c}, \frac{b-c}{a}, \frac{c-a}{b})=(x,y,z)\)
Khi đó:
\(Q=(x+y+z)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}\)
Ta có:
\(x+y=\frac{a-b}{c}+\frac{b-c}{a}=\frac{a^2-ab+bc-c^2}{ac}=\frac{b(c-a)-(c-a)(c+a)}{ca}\)
\(=\frac{b(c-a)-(c-a)(-b)}{ac}=\frac{2b(c-a)}{ca}\) (do $a+b+c=0$)
\(\Rightarrow \frac{x+y}{z}=\frac{2b(c-a)}{ca}.\frac{b}{c-a}=\frac{2b^2}{ca}=\frac{2b^3}{abc}\)
Hoàn toàn tương tự:
\(\frac{y+z}{x}=\frac{2c^3}{abc}; \frac{x+z}{y}=\frac{2a^3}{abc}\)
Do đó:
\(Q=3+\frac{x+y}{z}+\frac{y+z}{x}+\frac{x+z}{y}=3+\frac{2(a^3+b^3+c^3)}{abc}=3+\frac{2[(a+b)^3-3ab(a+b)+c^3]}{abc}\)
\(=3+\frac{2[(-c)^3-3ab(-c)+c^3]}{abc}=3+\frac{2.3abc}{abc}=3+6=9\)
Ta có đpcm.
*Đặt P = (a-b)/c + (b-c)/a + (c-a)/b, ta có:
P = (a-b)/c + (b-c)/a + (c-a)/b
=> abc.P = ab(a-b) + bc(b-c) + ca(c-a)
= ab(a-b) + bc(b-a + a-c) + ca(c-a)
= ab(a-b) - bc(a-b) - bc(c-a) + ca(c-a)
= b(a-b)(a-c) + c(c-a)(a-b)
= (a-b)(a-c)(b-c)
=> P = (a-b)(a-c)(b-c)/abc
*Đặt Q = c/(a-b) + a/(b-c) + b/(c-a), ta có:
Vì a+b+c = 0 => a+b = -c ; b+c = -a ; c+a = -b
Q = c/(a-b) + a/(b-c) + b/(c-a)
=> (a-b)(b-c)(c-a).Q = c(b-c)(c-a) + a(a-b)(c-a) + b(a-b)(b-c)
= c(b-c)(c-a) + (-b-c)(a-b)(c-a) + b(a-b)(b-c)
= c(b-c)(c-a) – c(a-b)(c-a) – b(a-b)(c-a) + b(a-b)(b-c)
= c(c-a)(2b-a-c) + b(a-b)(a+b-2c)
= 3bc(c-a) – 3bc(a-b)
= 3bc(b+c-2a)
= 3bc(-a-2a)
= -9abc
=> Q = -9abc/(a-b)(b-c)(c-a) = 9abc /(a-b)(b-c)(a-c)
Vậy P.Q = 9 (đpcm)
Ta có:
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{b-a+a-c}{\left(a-b\right)\left(a-c\right)}=\frac{b-a}{\left(a-b\right)\left(a-c\right)}+\frac{a-c}{\left(a-b\right)\left(a-c\right)}=\frac{1}{c-a}+\frac{1}{a-b}\)
Tương tự:
\(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{c-b+b-a}{\left(b-c\right)\left(b-a\right)}=\frac{c-b}{\left(b-c\right)\left(b-a\right)}+\frac{b-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{a-b}+\frac{1}{b-c}\)
Và: \(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{a-c+c-b}{\left(c-a\right)\left(c-b\right)}=\frac{a-c}{\left(c-a\right)\left(c-b\right)}+\frac{c-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{b-c}+\frac{1}{c-a}\)
=> \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}+\frac{1}{a-b}+\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{b-c}+\frac{1}{c-a}\)
=> \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)
=> đpcm
Gọi \(M=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\)
Ta có : \(M.\frac{c}{a-b}=1+\frac{c}{a-b}\left(\frac{b-c}{a}+\frac{c-a}{b}\right)=+\frac{c}{a-b}\left(\frac{b^2-bc+ac-a^2}{ab}\right)\)
\(=1+\frac{c}{a-b}.\frac{\left(a-b\right)\left(c-a-b\right)}{ab}=1+\frac{2c^2}{ab}=1+\frac{2c^3}{abc}\)
Tương tự : \(M.\frac{a}{b-c}=1+\frac{2a^3}{abc};M.\frac{b}{c-a}=+\frac{2b^3}{abc}\)
\(\Rightarrow A=3+\frac{2\left(a^3+b^3+c^3\right)}{abc}=9\)(vì \(a^3+b^3+c^3=3abc\))