Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
** Bài này chỉ đúng khi $a,b,c$ không âm thôi bạn nhé.
Lời giải:
Theo BĐT Schur:
$a^3+b^3+c^3+3abc\geq ab(a+b)+bc(b+c)+ca(c+a)$
$\Rightarrow a^3+b^3+c^3+6abc\geq (a+b+c)(ab+bc+ac)$
$\Leftrightarrow a^3+b^3+c^3+3(a+b+c)(ab+bc+ac)+6abc\geq 4(a+b+c)(ab+bc+ac)$
$\Leftrightarrow a^3+b^3+c^3+3[(a+b)(b+c)(c+a)+abc]+6abc\geq 4(a+b+c)(ab+bc+ac)$
$\Leftrightarrow a^3+b^3+c^3+3(a+b)(b+c)(c+a)+9abc\geq 4(a+b+c)(ab+bc+ac)$
$\Leftrightarrow (a+b+c)^3+9abc\geq 4(a+b+c)(ab+bc+ac)$
Dấu "=" xảy ra khi $a=b=c$
Bài này mẫu số là \(\left(a+b+c\right)^3\) thì đúng hơn, mũ 2 cách làm vẫn y hệt nhưng cho 1 kết quả rất xấu
\(A\ge3\left(a^2+b^2+c^2\right)+\dfrac{24\left(a+b+c\right)\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}\)
\(=3\left(a+b+c\right)^2+\dfrac{192}{a+b+c}-48\)
\(=\dfrac{\sqrt{6}}{3}\left(a+b+c\right)^2+\dfrac{96}{a+b+c}+\dfrac{96}{a+b+c}+\left(3-\dfrac{\sqrt{6}}{3}\right)\left(a+b+c\right)^2-48\)
\(\ge3\sqrt[3]{\dfrac{96^2.\sqrt{6}}{3}}+\left(3-\dfrac{\sqrt{6}}{3}\right).3\left(ab+bc+ca\right)-48=...\)
\(3=ab+bc+ca\ge3\sqrt[3]{abc}\Rightarrow abc\le1\)
\(\Rightarrow VT\le\frac{1}{abc+a^2\left(b+c\right)}+\frac{1}{abc+b^2\left(c+a\right)}+\frac{1}{abc+c^2\left(a+b\right)}\)
\(\Rightarrow VT\le\frac{1}{a\left(ab+bc+ca\right)}+\frac{1}{b\left(ab+bc+ca\right)}+\frac{1}{c\left(ab+bc+ca\right)}\)
\(\Rightarrow VT\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{ab+bc+ca}{3abc}=\frac{1}{abc}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
* Bài này sử dụng cách đẳng thức:
\(a^2+b^2+c^2-ab-bc-ca=\frac{1}{2}.\Sigma\left(a-b\right)^2\)
\(27\left(a+b\right)\left(b+c\right)\left(c+a\right)-8\left(a+b+c\right)^3\)
\(=\Sigma\left(-4a-4b-c\right)\left(a-b\right)^2\)
--------------------------------------------------
\(BĐT\Leftrightarrow\frac{8\left(a^2+b^2+c^2-ab-bc-ca\right)}{ab+bc+ca}+\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)-8\left(a+b+c\right)^3}{\left(a+b+c\right)^3}\ge0\) (tự hiểu:v)
\(\Leftrightarrow\frac{4.\frac{1}{2}\Sigma\left(a-b\right)^2}{ab+bc+ca}+\frac{\Sigma\left(-4a-4b-c\right)\left(a-b\right)^2}{\left(a+b+c\right)^3}\ge0\)
\(\Leftrightarrow\Sigma\left(a-b\right)^2\left(\frac{2}{ab+bc+ca}-\frac{4a+4b+c}{\left(a+b+c\right)^3}\right)\ge0\)
Ta chỉ cần chứng minh \(\frac{2}{ab+bc+ca}-\frac{4a+4b+c}{\left(a+b+c\right)^3}>0\) (rồi tương tự các biểu thức còn lại phía sau:v)
\(\Leftrightarrow\frac{2\left(a+b+c\right)^3-\left(4a+4b+c\right)\left(ab+bc+ca\right)}{\left(ab+bc+ca\right)\left(a+b+c\right)^3}>0\)
\(\Leftrightarrow\frac{2a^3+2a^2b+2a^2c+2ab^2+3abc+5ac^2+2b^3+2b^2c+5bc^2+2c^3}{\left(ab+bc+ca\right)\left(a+b+c\right)^3}>0\) (luôn đúng với mọi a, b, c > 0)
Như vậy tương tự các biểu thức còn lại phía sau ta có đpcm.
Đẳng thức xảy ra khi a = b = c
Ta có: \(a+b+c\ge3\sqrt[3]{abc}\)
\(ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\)
\(\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)(1)
Ta có: \(\left(a-b\right)^3+\left(b-c\right)^2+\left(c-a\right)^3\)
\(=\left(a-b\right)^3+3\left(a-b\right)^2\left(b-c\right)+3\left(a-b\right)\left(b-c\right)^2+\left(b-c\right)^3-\left(a-c\right)^3-3\left(a-b\right)^2\left(b-c\right)-3\left(a-b\right)\left(b-c\right)^2\)
\(=\left(a-b+b-c\right)^3-\left(a-c\right)^3-3\left(a-b\right)\left(b-c\right)\left(a-b+b-c\right)\)
\(=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
Ta có: \(a-b+b-c+c-a\ge3\sqrt[3]{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(\Leftrightarrow0\ge\sqrt[3]{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(\Leftrightarrow0\ge3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
\(\Leftrightarrow9abc\ge9abc+3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)(2)
Từ (1), (2) ta có: \(\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc+3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc+\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)
Dấu "=" xảy ra khi \(a=b=c\)