Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì BA= BD => tam giác BAD cân tại B => góc DBA = góc DAB
b, Trong tam giác vuông ADH có: góc BDA + góc DAH = 90 độ
Mà góc CAB + góc DAH = góc CAB = 90 độ
=> góc BDA + góc DAH = góc CAB + góc DAB
Mà góc DBA = góc DAB ( cmt)
=> góc DAH = góc CAD => AD là tia phân giác của góc HAC
c, Xét tam giác AKD và tam giác AHD, có:
AD chung ; góc DAH = góc DAK ( AD là tia phân giác của góc HAC)
góc AHD = góc AKD ( AH là đường cao ; DK vuông góc AC)
=> tam giác AKD = tam giác AHD ( cạnh huyền - góc nhọn )
=> AH = AK ( 2 cạnh tương ứng)
d, Ta có : BC + AH = BD + BC + AH = AB + AK ( vì BD = AB ; AH = AK) (1)
Xét tam giác DC vuông tại K có:
KC là cạnh góc vuông
DC là cạnh huyền
=> KC <DC ( quan hệ giữa đường vuông góc và đường xiên) (2)
Từ (1) và (2) => BC + AH > AB+ KC + AC
=> BC + AH > AB+ AC ( Vì AC = KC + AK)
Đánh giá cho mình nhá ! =))
Câu 1: Em tham khảo tại đây nhé.
Câu hỏi của trần thị minh hải - Toán lớp 7 - Học toán với OnlineMath
a) Vì BA=BA ( GT )
\(\Rightarrow\Delta BAD\) cân tại B ( đn)
\(\Rightarrow\widehat{BAD}=\widehat{BDA}\)( tính chất ) (4)
b) Vì tam giác HAD vuông tại H \(\Rightarrow\widehat{HAD}+\widehat{D1}=90^0\)( phụ nhau ) (1)
Ta có: \(\widehat{DAC}+\widehat{DAB}=\widehat{BAC}=90^0\)( h.vẽ) (2)
Từ (1) và (2) \(\Rightarrow\widehat{HAD}+\widehat{BDA}=\widehat{DAC}+\widehat{DAB}\)( 3)
Từ (3) và (4) \(\Rightarrow\widehat{HAD}=\widehat{CAD}\)mà AD nằm giữa 2 tia AH và AC ( c.ve)
\(\Rightarrow AD\)là phân giác của góc HAC.
c) Xét \(\Delta HAD\)và \(\Delta CAD\)có:
\(\hept{\begin{cases}\widehat{AHD}=\widehat{ACD}=90^0\\ADchung\\\widehat{HAD}=\widehat{CAD}\left(cmt\right)\end{cases}\Rightarrow\Delta HAD=\Delta CAD\left(ch-gn\right)}\)
\(\Rightarrow\hept{\begin{cases}HD=CD\left(2canhtuongung\right)\\AH=AK\left(2canhtuongung\right)\end{cases}}\)
Xét tam giác DHC có HD=CD ( cmt)
\(\Rightarrow\Delta DHC\)cân tại D
\(\Rightarrow\widehat{DHC}=\widehat{DCH}\left(tc\right)\) (5)
Ta có: \(\widehat{H1}+\widehat{DHC}=\widehat{AHD}=90^0\) (6)
\(\widehat{K1}+\widehat{DCH}=\widehat{AKD}=90^0\)(7)
Từ (5) , (6) và (7) \(\Rightarrow\widehat{H1}=\widehat{K1}\)
\(\Rightarrow\Delta AHK\)cân tại A.
d) Xét tam giác DKC vuông tại K nên \(DC>KC\)( tính chất )
\(\Rightarrow DC+AK>KC+AK\)
mà AH=AK ( cmt)
\(\Rightarrow DC+AH>KC+AK\)
\(\Rightarrow DC+AH+BD>KC+AK+BD\)
mà AB=BD ( cmt)
\(\Rightarrow AK+KC+AB< DC+BD+AH\)
\(\Rightarrow AB+AC< BC+AH\left(đpcm\right)\)
( p/s: Đánh giấu cho tôi kí hiệu góc H1 và K1 nhé chắc bạn biết mà )
a) vì bd =ab nên=>tam giác bad cân tại b
=>góc bad = góc bda
cho mk đi mk giải tiếp cho ^^^
a) Xét ΔBAD có BA=BD(gt)
nên ΔBAD cân tại B(Định nghĩa tam giác cân)
Suy ra: \(\widehat{BAD}=\widehat{BDA}\)(hai góc ở đáy)
b) Ta có: \(\widehat{CAD}+\widehat{BAD}=90^0\)(tia AD nằm giữa hai tia AB,AC)
\(\widehat{HAD}+\widehat{HDA}=90^0\)(ΔHAD vuông tại H)
mà \(\widehat{BAD}=\widehat{HDA}\)(cmt)
nên \(\widehat{CAD}=\widehat{HAD}\)
hay AD là tia phân giác của \(\widehat{HAD}\)
c) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))
Do đó: ΔAHD=ΔAKD(Cạnh huyền-góc nhọn)
Suy ra: AH=AK(hai cạnh tương ứng)