K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 7 2019

Lời giải:

\(a,b,c\in [0;1]\Rightarrow b^2\leq b; c^3\leq c\)

\(\Rightarrow a+b^2+c^3-ab-bc-ac\leq a+b+c-ab-bc-ac(*)\)

\(a,b,c\leq 1\Rightarrow (a-1)(b-1)(c-1)\le 0\)

\(\Leftrightarrow (ab-a-b+1)(c-1)\leq 0\)

\(\Leftrightarrow abc-(ab+bc+ac)+(a+b+c)-1\leq 0\)

\(\Leftrightarrow a+b+c-(ab+bc+ac)\leq 1-abc\leq 1(**)\) (do $abc\geq 0$)

Từ \((*); (**)\Rightarrow a+b^2+c^3-ab-bc-ac\leq 1\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
19 tháng 6 2021

Lời giải:

Vế đầu:

Áp dụng BĐT AM-GM:

$(ab+bc+ac)(a+b+c)\geq 9abc$

$\Leftrightarrow ab+bc+ac\geq 9abc$

$\Rightarrow ab+bc+ac-2abc\geq 9abc-2abc=7abc\geq 0$ do $a,b,c\geq 0$

Vế sau:

Áp dụng BĐT Schur:

$abc\geq (a+b-c)(b+c-a)(c+a-b)=(1-2a)(1-2b)(1-2c)$

$\Leftrightarrow 9abc\geq 4(ab+bc+ac)-1$

$\Rightarrow 2abc\geq \frac{8}{9}(ab+bc+ac)-\frac{2}{9}$

$\Rightarrow ab+bc+ac-2abc\leq ab+bc+ac-[\frac{8}{9}(ab+bc+ac)-\frac{2}{9}]=\frac{ab+bc+ac}{9}+\frac{2}{9}$

$\leq \frac{(a+b+c)^2}{27}+\frac{2}{9}$ (theo BĐT AM-GM)

$=\frac{1}{27}+\frac{2}{9}=\frac{7}{27}$

Ta có đpcm.

8 tháng 8 2016

B2: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=4\)

\(\Rightarrow\orbr{\begin{cases}a+b+c=2\\a+b+c=-2\end{cases}}\)

TH1: \(a+b+c=2\Rightarrow c=2-\left(a+b\right)\)

\(a^2+b^2+c^2=2\)\(\Leftrightarrow a^2+b^2+\left(2-a-b\right)^2=2\)

\(\Leftrightarrow a^2+b^2+ab-2\left(a+b\right)+1=0\)

\(\Leftrightarrow a^2+\left(b-2\right)a+b^2-2b+1=0\)

Xem đây là một phương trình bậc hai ẩn a, tham số b.

Để tồn tại a thỏa phương trình trên thì \(\Delta\ge0\)

\(\Leftrightarrow\left(b-2\right)^2-4\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow b\left(3b-4\right)\le0\)\(\Leftrightarrow0\le b\le\frac{4}{3}\)

Do vai trò của a, b, c là như nhau nên \(0\le a,b,c\le\frac{4}{3}\)

(hoặc đổi biến thành b và tham số a --> CM được a, rồi thay \(b=2-c-a\) sẽ chứng minh được c)

TH2: \(a+b+c=-2\) --> tương tự trường hợp 1 nhưng kết quả sẽ là 

\(-\frac{4}{3}\le a,b,c\le0\)

Kết hợp 2 trường hợp lại, ta có đpcm.

8 tháng 10 2016

dễ quá 

dễ quá

mình biêt s

làm đó

17 tháng 6 2019

Ta có:\(\sqrt{\frac{bc}{a+bc}}=\sqrt{\frac{bc}{a\left(a+b\right)+c\left(a+b\right)}}\)

\(=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\) (Áp dụng BĐT AM-GM)

Tương tự với hai BĐT còn lại và cộng theo vế ta thu được đpcm.

NV
8 tháng 12 2021

Do \(a^2+b^2+c^2=1\Rightarrow0\le a;b;c\le1\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\\b^{2011}\le b\\c^{2011}\le c\end{matrix}\right.\)

\(\Rightarrow T\le a+b+c-ab-bc-ca=\left(a-1\right)\left(b-1\right)\left(c-1\right)+1-abc\le1-abc\le1\)

\(T_{max}=1\) khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị