K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2018

Câu hỏi của hanhungquan - Toán lớp 8 - Học toán với OnlineMath tương tự

30 tháng 8 2018

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2019}\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{2019}\Leftrightarrow2019\left(ab+bc+ca\right)=abc\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)-abc=0\)

\(\Leftrightarrow\left(ab+bc\right)\left(a+b+c\right)+ca\left(a+b+c\right)-abc=0\)

\(\Leftrightarrow b\left(a+c\right)\left(a+b+c\right)+ca\left(a+c\right)+abc-abc=0\)

\(\Leftrightarrow\left(a+c\right)\left(ab+b^2+bc+ca\right)=0\)

\(\Leftrightarrow\left(a+c\right)\left[b\left(a+b\right)+c\left(a+b\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow a+b=0\)hoặc \(b+c=0\)hoặc \(c+a=0\)

Mà \(a+b+c=2019\)

\(\Rightarrow a=2019\)hoặc \(b=2019\)hoặc \(c=2019\)

22 tháng 9 2019

\(a+b+c=2020\Rightarrow\frac{1}{a+b+c}=\frac{1}{2020}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)=abc\)

\(\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)-abc=0\)

\(\Leftrightarrow\left(ab+bc+ac\right)\left(b+c\right)+a\left(ab+ac\right)+abc-abc=0\)

\(\Leftrightarrow\left(ab+bc+ac\right)\left(b+c\right)+a^2\left(b+c\right)=0\)

\(\Leftrightarrow\left(ab+bc+ac+a^2\right)\left(b+c\right)=0\)

\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

Nếu a + b = 0 thì c = 2020

Nếu b + c = 0 thì a = 2020

Nếu a + c = 0 thì b = 2020

22 tháng 9 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2020}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Rightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\)

\(\Rightarrow\left(a+b+c\right)\left(ab+ac+bc\right)=abc\)

\(\Rightarrow a^2b+a^2c+abc+ab^2+abc+b^2c+abc+ac^2+bc^2=abc\)

\(\Rightarrow...\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(TH1:a=-b\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a}-\frac{1}{a}+\frac{1}{c}=\frac{1}{c}\)

Mà \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2020}\Rightarrow\frac{1}{c}=\frac{1}{2020}\Leftrightarrow c=2020\)

Các trường hợp kia tương tự

9 tháng 11 2019

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2019}\)

\(\Leftrightarrow\frac{ab+bc+ac}{abc}=\frac{1}{2019}\)

\(\Leftrightarrow2019\left(ab+bc+ac\right)=abc\)

\(\Leftrightarrow2019\left(ab+bc+ac\right)-abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ac\right)-abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc\right)+ac\left(a+b+c\right)-abc=0\)

\(\Leftrightarrow b\left(a+b+c\right)\left(a+c\right)+ca\left(a+c\right)=0\)

\(\Leftrightarrow\left(ab+b^2+bc+ac\right)\left(a+c\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

Suy ra a + b = 0 hoặc b + c = 0 hoặc a + c = 0

Mà a + b + c = 2019 nên phải có 1 trong ba số a,b,c bằng 2019 (đpcm)

7 tháng 8 2020

Vào trang cá nhân của mình đi, có cái này hay lắm, nhớ kb vs mình nha

13 tháng 11 2018

khó quá nha bn

mk mới chỉ hok lớp 7 thôi

xin lỡi nha

mk tin sẽ có nguoi tra lới cau hoi của bn

hok tot >_<

24 tháng 12 2021

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)

\(\Leftrightarrow a^2b+ab^2+c^2a+ca^2+b^2c+bc^2+2abc=0\)

\(\Leftrightarrow\left(a^2+2ab+b^2\right)c+ab\left(a+b\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

=> Hoặc a+b=0 hoặc b+c=0 hoặc c+a=0

=> Hoặc a=-b hoặc b=-c hoặc c=-a

Ko mất tổng quát, g/s a=-b

a) Ta có: vì a=-b thay vào ta được:

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}\)

\(\frac{1}{a^3+b^3+c^3}=\frac{1}{-b^3+b^3+c^3}=\frac{1}{c^3}\)

=> đpcm

b) Ta có: \(a+b+c=1\Leftrightarrow-b+b+c=1\Rightarrow c=1\)

=> \(P=-\frac{1}{b^{2021}}+\frac{1}{b^{2021}}+\frac{1}{c^{2021}}=\frac{1}{1^{2021}}=1\)

29 tháng 6 2017

Ta có:

\(\left(a+b+c+d\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)\ge\left(a+b+c+d\right).\frac{16}{\left(a+b+c+d\right)}=16\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge4\)

Dấu = xảy ra khi \(a=b=c=d=1\)

10 tháng 12 2019

\(\hept{\begin{cases}a^2+b^4+c^6+d^8=1\\a^{2016}+b^{2017}+c^{2018}+d^{2019}=1\end{cases}}\)

=> \(0\le a^2;b^4;c^6;d^8\le1\)

=> \(-1\le a;b;c;d\le1\)

=> \(a^{2016}\le a^2\)\(b^{2017}\le b^4\)\(c^{2018}\le c^6\)\(d^8\le d^{2019}\)

=> \(a^{2016}+b^{2017}+c^{2018}+d^{2019}\le a^2+b^4+c^6+d^8\)

Do đó: \(a^{2016}+b^{2017}+c^{2018}+d^{2019}=a^2+b^4+c^6+d^8=1\)

<=> \(a^{2016}=a^2;b^{2017}=b^4;c^{2018}=c^6;d^{2019}=d^8;a^2+b^4+c^6+d^8=1\)

<=> \(\orbr{\begin{cases}a=0\\a=\pm1\end{cases}}\); ​\(\orbr{\begin{cases}b=0\\b=1\end{cases}}\)\(\orbr{\begin{cases}c=0\\c=\pm1\end{cases}}\)\(\orbr{\begin{cases}d=0\\d=1\end{cases}}\)\(a^2+b^4+c^6+d^8=1\)

<=>  \(a=b=c=0;d=1\)hoặc \(a=b=d;c=\pm1\) hoặc \(a=c=d=0;b=1\)hoặc \(b=c=d=0;a=\pm1\).

10 tháng 12 2019

Tại sao \(0\le a^2;b^4;c^6;d^8\le1\) Lại suy ra \(-1\le a;b;c;d\le1\)????????????????????????

NV
9 tháng 3 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2019}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\left(\frac{ab+ac+bc+c^2}{abc\left(a+b+c\right)}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a+b=0\Rightarrow c=2019\\b+c=0\Rightarrow a=2019\\a+c=0\Rightarrow b=2019\end{matrix}\right.\)