Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Xét tam giác $AMC$ và $EMB$ có:
$AM=ME$
$MB=MC$ (do $M$ là trung điểm $BC$)
$\widehat{AMC}=\widehat{EMB}$ (đối đỉnh)
$\Rightarrow \triangle AMC=\triangle EMB$ (c.g.c)
$\Rightarrow AC=EB$
b. Xét tam giác $AFD$ và $BED$ có:
$FD=ED$
$AD=BD$ (do $D$ là trung điểm $AB$)
$\widehat{ADF}=\widehat{BDE}$ (đối đỉnh)
$\Rightarrow \triangle AFD=\triangle BED$ (c.g.c)
$\Rightarrow AF=BE$
Mà theo phần a thì $AC=BE$ nên $AF=AC$
a: Xét tứ giác ACEB có
M là trung điểm của BC
M là trung điểm của AE
Do đó: ACEB là hình bình hành
Suy ra: AC//BE
a: Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
Do đó: ABEC là hình bình hành
Suy ra: AC=BE
a, Xét tam giác ACM và tam giác EMB có:
AM=ME
GÓC CMA =GÓC BME(đối đỉnh)
CM=MB
=> TAM GIÁC ACM=EMB( C.G.C)
a: Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
Do đó: ABEC là hình bình hành
Suy ra: AC=BE(1)
b: Xét tứ giác AEBF có
D là trung điểm của AB
D là trung điểm của EF
Do đó: AEBF là hình bình hành
Suy ra: AF=BE(2)
Từ (1) và (2) suy ra AC=AF
a: Xét ΔAMB và ΔDMC có
MA=MD
góc AMB=góc DMC
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
Do đó: ABDC là hình bình hành
=>BD//AC
c: Xét tứ giác ACBE có
N là trung điểm chung của AB và CE
Do đó: ACBE là hình bình hành
=>BE//AC và BE=AC
ACDB là hình bình hành
=>AC//BD và AC=BD
AC//BD
AC//BE
BD cắt BE tại B
Do đó: D,B,E thẳng hàng
mà BD=BE(=AC)
nên B là trung điểm của DE