K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2022

+) Xét tứ giác ABCD:

-  M là trung điểm của cạnh BC (gt).

-  M là trung điểm của cạnh DA (D đối xứng với A qua M).

\(\Rightarrow\) Tứ giác ABDC là hình bình hành (dhnb).

Xét tam giác ABC: \(\widehat{A}=90^o\left(gt\right).\)

\(\Rightarrow\) Tam giác ABC vuông tại A.

\(\Rightarrow\) \(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.5.8=20cm^2.\)

13 tháng 1 2022

ai làm giúp em vs ạ còn 10p thôi

5 tháng 2 2022

a) Xét tứ giác  \(ADBC\) ta có :

\(IB=IA\left(g.t\right)\)

\(IC=IC\) ( \(D\) đối xứng qua \(I\))

Vì tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường 

Vậy tứ giác \(ADBC\) là hình bình hành 

b) Xét \(\Delta ABC\) ta có :

\(IA=IB\left(g.t\right)\)

\(MB=MC\left(g.t\right)\)

\(\Rightarrow IM\) là đường trung bình \(\Delta ABC\)

Do đó : \(IM\text{/ / }AC\)

Mà \(AB\text{⊥}AC\left(A=90^o\right)\)

Vậy \(IM\text{⊥}AB\)

Áp dụng định lí pytago  \(\Delta ABC\) ta có :

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AB=\sqrt{BC^2-AC^2}=\sqrt{13^2-5^2}=12\left(cm\right)\)

\(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.13.5=30\left(cm^2\right)\)

undefined

 

24 tháng 11 2023

Phần tính diện tích ∆ABC cậu lộn AB =13cm roii í phải là 1/2 × 12 × 5 = 30 cm  nha

a: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

nên ABCD là hình bình hành

b: Xét tứ giác AEBC có

N là trung điểm chung của AB và EC

nên AEBC là hình bình hành

=>AE//BC và AE=BC

=>AD//AE và AD=AE
=>A là trung điểm của DE

10 tháng 1 2023

loading...loading...

Giải thích các bước giải:

ta có: Tam giác ABC vuông tại A (gt)

=> AB^2+AC^2=BC^2

      6^2+8^2     =BC^2

       36+64         =BC^2

        100             =BC^2

     =>BC=10cm

Tam giác ABC vuông tại A có Am là đg trung tuyến

=> AM=BC/2=10/2=5cm

15 tháng 3 2020

HÌNH VẼ THÌ BẠN TỰ VẼ NHÉ, HÌNH NÀY DỄ VẼ MÀ NHỈ. 

Câu a bạn V (Team BTS) làm rồi nên mình chỉ làm các câu còn lại thôi nhé.

b) Vì DM vuông góc AB, AC vuông góc AB (gt) => DM // AC.

=> DMCA là hình thang mà góc ADM = góc DAC = 90 độ.

Do đó ADMC là hình thang vuông.

c) Xét tam giác ABC ta có: DM // AC (cmt), M là trung điểm BC (AM là trung tuyến)

=> D là trung điểm của AB.

Tứ giác AEBM có AB và EM là hai đường chéo cắt nhau tại trung điểm D. => AEBM là hình bình hành. (1)

Lại xét tam giác AMB cân tại M (MA=MB) có MD là trung tuyến => MD cũng là đường cao=> ME vuông góc AB tại D. (2)

Từ (1) và (2) => AEBM là hình thoi.

d) Vì AEBM là hình thoi => AE // BM, AE = BM. 

Mà BM = MC =>  AE // MC, AE = MC. Do đó AEMC là hình bình hành.

e, Câu e mình không hiểu lắm vì thấy đề bài cứ sai sai làm sao. Mình chỉ chứng minh câu F đối xứng với E qua A thôi nhé.

Gọi I là giao điểm của AC và MF. Vì M đối xứng F qua AC => I là trung điểm MF, AC vuông góc MF tại I. 

Chứng minh tương tự câu c ta sẽ được AFMC là hình thoi => AF // MC, AF = MC. 

Mà AE // MC, AE = MC (cmt)

=> A, E, F thẳng hàng (tiên đề Ơ-clit) và A là trung điểm của EF (AE=AF)

Vậy F đối xứng E qua A.

17 tháng 11 2021

a)

Ta có: MB = MC; MA = MD (gt)

⇒ Tứ giác ABDC là hình bình hành

Mà: ∠A = 90°

⇒ Tứ giác ABDC là hình chữ nhật (đpcm)

b)

Gọi O là giao điểm của AC và AE

ΔAED có: OA = OE (E đối xứng với A qua BC); MA = MD (gt)

⇒ OM là đường trung bình của ΔAED

⇒ OM // ED (1)

Vì: E đối xứng với A qua BC

⇒ BC là đường trung trực của AE

⇒ BC ⊥ AE hay OM ⊥ AE (2)

Từ (1), (2) ⇒ ED ⊥ AE (đpcm)

c)

Ta có: BC // ED (OM // ED)

⇒ Tứ giác BEDC là hình thang

Ta có: BD = AC (Tứ giác ABDC là hình chữ nhật) (a)

ΔAEC có: CO vừa là đường trung tuyến vừa là đường cao

⇒ ΔAEC cân tại C ⇒ CA = CE (b)

Từ (a), (b) ⇒ BD = EC

Hình thang BEDC có: BD = EC

⇒ Tứ giác BEDC là hình thang cân

29 tháng 12 2021

a: AM=6,5cm