Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\Leftrightarrow a+b\ge2\sqrt{ab}\)
Tương tự: \(b+c\ge2\sqrt{bc}\) ; \(c+a\ge2\sqrt{ca}\)
Nhân vế với vế:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\) hay tam giác đã cho là tam giác đều
Áp dụng bất đẳng thức Cô - si cho 3 số dương a, b, c
\(a+b\ge2\sqrt{ab}\) ; \(b+c\ge2\sqrt{bc}\); \(c+a\ge\sqrt{ca}\)
Nhân các vế của BĐT \(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Dấu " = " xảy ra khi a = b = c => tam giác đó đều
Do a,b,c là 3 cạnh là 3 cạnh tam giác =>a,b,c>0
Áp dụng BĐT co si cho 2 số dương ta có:
a+b\(\ge2\sqrt{ab}\)
b+c\(\ge2\sqrt{bc}\)
a+c\(\ge2\sqrt{ac}\)
=>(a+b)(b+c)(c+a)>\(2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8\sqrt{a^2b^2c^2}=8abc\)
Dấu bằng xảy ra <=>a=b b=c c=a=>a=b=c
Mà theo đề bài (a+b)(b+c)(c+a)=8abc
=>a=b=c=>tam giác đó là tam giác đều
Ta có
\(1+\frac{b}{a}=\frac{a+b}{a}\ge2\frac{\sqrt{ab}}{a}\)
\(1+\frac{c}{b}\ge2\frac{\sqrt{bc}}{b}\)
\(1+\frac{a}{c}\ge2\frac{\sqrt{ac}}{c}\)
Nhân vế theo vế ta được
\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\ge8\frac{\sqrt{ab.bc.ca}}{abc}=8\)
Dấu = xảy ra khi a = b = c hay tam giác ABC đều
Cho a,b,c là độ dài ba cạnh của tam giác thỏa mãn (1+b/a)(1+c/b)(1+a/c)=8.Chứng minh tam giác đó đều
\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)
Ta có (a +b)2 >=4ab với mọi a,b>0. Dấu = xảy ra <=> a = b
(b+c)2 >=4bc, với mọi b,c >0. Dấu = xảy ra <=> b = c
(c+a)2 >=4ca, với mọi a,b>0. Dấu = xảy ra <=> c = a
=> (a+b)2(b+c)2(c+a)2 >=64a2b2c2 (a,b,c >0)
=> (a+b)(b+c)(c+a) >=8abc => (a+b)(b+c)(c+a)/abc >=8
Dấu = xảy ra <=> a = b = c <=> Tam giác đều
Vì a,b,c là độ dài 2 cạnh của tam giác .Áp dụng BĐT Cô si ta có:
a+b>=2x căn(ab)
b+c>= 2x căn(bc)
c+a>= 2x căn(ac)
Nhân vế theo vế ta được (a+b)(b+c)(c+a) >=8abc
Dấu = xảy ra <=> a=b;b=c;c=a => a=b=c => tam giác đó là tam giác đều