K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2016

Điều kiện đề bài (2c)2=(a+c)(b+c)⇒(2c)2=(a+c)(b+c). Gọi d=gcd(a+c,b+c)d=gcd(a+c,b+c) thì do ab=pPa−b=p∈P nên d=1d=1hoặc d=pd=p

Nếu d=1d=1 thì a+c=x2,b+c=y2a+c=x2,b+c=y2 ( xy=2cxy=2c)

p=(xy)(x+y)⇒p=(x−y)(x+y). p=2p=2 thì vô lý. pp lẻ thì dễ thấy x=p+12=ab+12x=p+12=a−b+12y=ab12y=a−b−12

2c=xy=(ab1)(ab+1)48c+1=(ab)2⇒2c=xy=(a−b−1)(a−b+1)4⇒8c+1=(a−b)2 là scp

Nếu d=pd=p thì a+c=pm2,b+c=pn2a+c=pm2,b+c=pn2 ( 2c=pmn2c=pmn)

(mn)(m+n)=1m=1,n=0⇒(m−n)(m+n)=1→m=1,n=0 (loại)

19 tháng 9 2016

thtfgfgfghggggggggggggggggggggg

2 tháng 4 2018

  zdvdz

3 tháng 7 2017

3. 1998=a+b+c (a,b,c\(\in N\))

Xét a^3+b^3+c^3 - (a+b+c)=a(a-a)(a+1)+b(b-1)(b+1)+c(c-1)(c+1)

mà n(n-1)(n+1) luôn chia hết cho 6 với mọi số tự nhiên n

=>a^3+b^3+c^3 chia hết cho 6 (a+b+c chia hết cho 6)

23 tháng 7 2015

2a2 + a = 3b+ b => 2a2 - 2b2 + a - b = b2 => 2.(a - b).(a + b) + (a - b) = b2

=> (a - b). (2a + 2b + 1) = b2   (1)

Gọi d = ƯCLN (a-b; 2a + 2b + 1)

=> a - b chia hết cho d và  2a + 2b + 1 chia hết cho d

=> b2 =  (a - b). (2a + 2b + 1) chia hết cho d2

=> b chia hết cho d

Lại có  2(a - b) -  (2a + 2b + 1) chia hết cho d =>  -4b - 1   chia hết cho d

=> 1 chia hết cho d => d =1 => a - b và 2a + 2b + 1 nguyên tố cùng nhau  (2)

(1)(2) => a- b và 2a + 2b + 1 đều là số chính phương

6 tháng 12 2016

có rùi nè, 4b đó: Cho a+b+c=0. 

Tính: 1/(b^2+c^2-a^2)+1/(a^2+c^2-b^2)+1/(a^2+b^2-c^2). đó bài này đó

3 tháng 10 2018

\(M=\left(ab+bc+ca+a^2\right)\left(ab+bc+ca+b^2\right)\left(ab+bc+ca+c^2\right)\)

\(=\left[b\left(a+c\right)+a\left(a+c\right)\right]\left[a\left(b+c\right)+b\left(b+c\right)\right]\left[b\left(a+c\right)+c\left(a+c\right)\right]\)

\(=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(b+c\right)\left(a+c\right)\)

\(=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

=>đpcm

29 tháng 3 2016

a, b là 2 số tự nhiên liên tiếp nên a hoặc b sẽ là một số chẵn hoặc một số lẻ. => a=2k, b=2k+1, c=2k(2k+1)

P=a^2+b^2+c^2

P=(2k)^2+(2k+1)^2+[(2k)(2k+1)]^2

P=4k^2+4k^2+1+2.2k+4k^2(2k+1)^2

P=4k^2+4k^2+4k+4k^2.(4k^2+1+4k)+1 

mà 4k^2+4k^2+4k+4k^2.(4k^2+1+4k) chia hết cho 2

=> P ko chia hết cho 2.

P là số chính fuong lẻ