Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{a^3}{a^2+2b^2}=a-\dfrac{2ab^2}{a^2+2b^2}\ge a-\dfrac{2ab^2}{3\sqrt[3]{a^2b^4}}=a-\dfrac{2}{3}\sqrt[3]{ab^2}\ge a-\dfrac{2}{9}\left(a+b+b\right)=a-\dfrac{2}{9}\left(a+2b\right)\) Chứng minh tương tự ta được:
\(\dfrac{b^3}{b^2+2c^2}\ge b-\dfrac{2}{9}\left(b+2c\right);\dfrac{c^3}{c^2+2a^2}\ge c-\dfrac{2}{9}\left(c+2a\right)\)
\(\Rightarrow\dfrac{a^3}{a^2+2b^2}+\dfrac{b^3}{b^2+2c^2}+\dfrac{c^3}{c^2+2a^2}\ge a+b+c-\dfrac{2}{9}\left(a+2b+b+2c+c+2a\right)=a+b+c-\dfrac{2}{9}\left(3a+3b+3c\right)=\dfrac{1}{3}\left(a+b+c\right)\ge\dfrac{1}{3}\cdot3\sqrt[3]{abc}=1\)Dấu = xảy ra \(\Leftrightarrow a=b=c=1\)
Dễ dàng c/m : \(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}=1\)
Ta có : \(\dfrac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le\dfrac{1}{a+b+4}\le\dfrac{1}{4}\left(\dfrac{1}{a+2}+\dfrac{1}{b+2}\right)\)
Suy ra : \(\Sigma\dfrac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le2.\dfrac{1}{4}\left(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\right)=\dfrac{1}{2}.1=\dfrac{1}{2}\)
" = " \(\Leftrightarrow a=b=c=1\)
C/m : \(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}=1\) (*)
Thật vậy , (*) \(\Leftrightarrow\left(a+2\right)\left(b+2\right)+\left(b+2\right)\left(c+2\right)+\left(a+2\right)\left(c+2\right)=\left(a+2\right)\left(b+2\right)\left(c+2\right)\)
\(\Leftrightarrow ab+bc+ac+4\left(a+b+c\right)+12=abc+2\left(ab+bc+ac\right)+4\left(a+b+c\right)+8\)
\(\Leftrightarrow ab+bc+ac+abc=4\) (Đ)
=> (*) đúng ( đpcm )
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+3\ge\dfrac{2\left(a+b+c\right)}{abc}=2\left(\dfrac{1}{ab}+\dfrac{1}{ac}+\dfrac{1}{bc}\right)\)
Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xyz=1\)
BĐT trở thành: \(x^2+y^2+z^2+3\ge2\left(xy+yz+zx\right)\)
Theo nguyên lý Dirichlet, trong 3 số x;y;z luôn có ít nhất 2 số cùng phía so với 1
Không mất tính tổng quát, giả sử đó là x và y \(\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\)
\(\Rightarrow xy+1\ge x+y\Rightarrow xyz+z\ge xz+yz\Rightarrow2xyz+2z\ge2xz+2yz\)
\(\Rightarrow2\ge2xz+2yz-2z\) (do \(xyz=1\))
\(\Rightarrow VP=x^2+y^2+z^2+2+1\ge x^2+y^2+z^2+2xz+2yz-2z+1\)
\(VP\ge2xy+z^2+2xz+2yz-2z+1=2\left(xy+yz+zx\right)+\left(z-1\right)^2\ge2\left(xy+yz+zx\right)\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)
Đặt \(a=\dfrac{yz}{x^2};b=\dfrac{zx}{y^2};c=\dfrac{xy}{z^2}\)
Áp dụng BĐT BSC:
\(\dfrac{1}{a^2+a+1}+\dfrac{1}{b^2+b+1}+\dfrac{1}{c^2+c+1}\)
\(=\dfrac{x^4}{x^4+x^2yz+y^2z^2}+\dfrac{y^4}{y^4+y^2zx+z^2x^2}+\dfrac{z^4}{z^4+z^2xy+x^2y^2}\)
\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x^4+y^4+z^4+x^2y^2+y^2z^2+z^2x^2+xyz\left(x+y+z\right)}\)
Ta cần chứng minh:
\(\dfrac{\left(x^2+y^2+z^2\right)^2}{x^4+y^4+z^4+x^2y^2+y^2z^2+z^2x^2+xyz\left(x+y+z\right)}\ge1\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2\ge x^4+y^4+z^4+x^2y^2+y^2z^2+z^2x^2+xyz\left(x+y+z\right)\)
\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2-xy.yz-yz.zx-zx.xy\ge0\)
\(\Leftrightarrow\left(xy-yz\right)^2+\left(yz-zx\right)^2+\left(zx-xy\right)^2\ge0,\forall x,y,z\)
\(\Rightarrow dpcm\)
Đẳng thức xảy ra khi \(a=b=c=1\)
Ta có:
\(\left(b^2+c^2+1\right)\left(1+1+a^2\right)\ge\left(a+b+c\right)^2=9\)
\(\Rightarrow\dfrac{1}{b^2+c^2+1}\le\dfrac{a^2+2}{9}\)
\(\Rightarrow\dfrac{a}{b^2+c^2+1}\le\dfrac{a^3+2a}{9}\)
Tương tự: \(\dfrac{b}{c^2+a^2+1}\le\dfrac{b^3+2b}{9}\) ; \(\dfrac{c}{a^2+b^2+1}\le\dfrac{c^3+2c}{9}\)
Cộng vế:
\(VT\le\dfrac{a^3+b^3+c^3+2\left(a+b+c\right)}{9}=\dfrac{a^3+b^3+c^3+6}{9}\) (1)
Lại có:
\(\left(a^3+1+1\right)+\left(b^3+1+1\right)+\left(c^3+1+1\right)\ge3a+3b+3c\)
\(\Rightarrow a^3+b^3+c^3\ge3\Rightarrow6\le2\left(a^3+b^3+c^3\right)\) (2)
(1);(2) \(\Rightarrow VT\le\dfrac{a^3+b^3+c^3+2\left(a^3+b^3+c^3\right)}{9}=\dfrac{a^3+b^3+c^3}{3}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
Bunhiacopxki:
\(\left(a^2+b+c+d\right)\left(1+b+c+d\right)\ge\left(a+b+c+d\right)^2=16\)
\(\Rightarrow\dfrac{1}{a^2+b+c+d}\le\dfrac{1+b+c+d}{16}\)
Tương tự:
\(\dfrac{1}{b^2+c+d+a}\le\dfrac{1+c+d+a}{16}\) ; \(\dfrac{1}{c^2+d+a+b}\le\dfrac{1+d+a+b}{16}\)
\(\dfrac{1}{d^2+a+b+c}\le\dfrac{1+a+b+c}{16}\)
Cộng vế:
\(P\le\dfrac{4+3\left(a+b+c+d\right)}{16}=1\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=d=1\)
Bài toán cơ bản:
\(abc=1\Rightarrow\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}=1\)
Bunhiacopxki:
\(\left(a+b+c\right)\left(\dfrac{a}{\left(ab+a+1\right)^2}+\dfrac{b}{\left(bc+b+1\right)^2}+\dfrac{c}{\left(ac+c+1\right)^2}\right)\ge\left(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\right)^2=1\)
\(\Rightarrow\dfrac{a}{\left(ab+a+1\right)^2}+\dfrac{b}{\left(bc+b+1\right)^2}+\dfrac{c}{\left(ac+c+1\right)^2}\ge\dfrac{1}{a+b+c}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)