K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2021

Đặt \(\left(b+c,c+a,a+b\right)\rightarrow\left(x,y,z\right)\)thì \(x,y,z>0\)và \(a=\frac{y+z-x}{2};b=\frac{z+x-y}{2};c=\frac{x+y-z}{2}\)

Bất đẳng thức cần chứng minh trở thành: \(\frac{y+z-x}{2x}+\frac{25\left(z+x-y\right)}{2y}+\frac{4\left(x+y-z\right)}{2z}>2\)

Xét \(VT=\left(\frac{y}{2x}+\frac{z}{2x}-\frac{1}{2}\right)+\left(\frac{25z}{2y}+\frac{25x}{2y}-\frac{25}{2}\right)+\left(\frac{2x}{z}+\frac{2y}{z}-2\right)\)\(=\left(\frac{y}{2x}+\frac{25x}{2y}\right)+\left(\frac{25z}{2y}+\frac{2y}{z}\right)+\left(\frac{z}{2x}+\frac{2x}{z}\right)-15\)\(\ge2\sqrt{\frac{y}{2x}.\frac{25x}{2y}}+2\sqrt{\frac{25z}{2y}.\frac{2y}{z}}+2\sqrt{\frac{z}{2x}.\frac{2x}{z}}-15=2\)(BĐT Cauchy)

Đẳng thức xảy ra khi \(10x=2y=5z\)hay \(10\left(b+c\right)=2\left(c+a\right)=5\left(a+b\right)\)\(\Rightarrow\hept{\begin{cases}10b+8c=2a\\5b+10c=5a\end{cases}}\Leftrightarrow\hept{\begin{cases}2a=10b+8c\\2a=2b+4c\end{cases}}\Leftrightarrow8b+4c=0\)(Vô lí vì 8b + 4c > 0 với mọi b,c dương)

Vậy dấu bằng không xảy ra

20 tháng 1 2021

em chao chi a

11 tháng 9 2021

ơ đang chờ mấy bạn top bxh vô trả lời mà hỏng thấy đou

hộ mình với:(

11 tháng 9 2021

= mìnk ko biết

sorry

20 tháng 1 2021

Đặt \(\hept{\begin{cases}b+c=x>0\\c+a=y>0\\a+b=z>0\end{cases}}\Rightarrow\hept{\begin{cases}a=\frac{y+z-x}{2}\\b=\frac{z+x-y}{2}\\x=\frac{x+y-z}{2}\end{cases}}\)

Bất đẳng thức cần chứng minh tương đương:

\(\frac{9\left(y+z-x\right)}{2x}+\frac{25\left(z+x-y\right)}{2y}+\frac{64\left(x+y-z\right)}{2z}>30\)

Ta có: \(VP=\frac{9y}{2x}+\frac{9z}{2x}-\frac{9}{2}+\frac{25z}{2y}+\frac{25x}{2y}-\frac{9}{2}+\frac{32x}{z}+\frac{32y}{z}-32\)

\(=\left(\frac{9y}{2x}+\frac{25x}{2y}\right)+\left(\frac{9z}{2x}+\frac{32x}{z}\right)+\left(\frac{25z}{2y}+\frac{32y}{z}\right)-41\)

\(\ge2\cdot\frac{15}{2}+2\cdot12+2\cdot20-41=38>30\)

\(\Rightarrow\frac{9a}{b+c}+\frac{25b}{c+a}+\frac{64c}{a+b}>30\)

Sửa đề: Cho ba số thực a,b,c dương

Áp dụng BĐT Cauchy Schwarz, ta được:

\(VT=\left(a+b+c\right)\left(\frac{9}{bc}+\frac{25}{c+a}+\frac{64}{a+b}\right)-98\ge\left(a+b+c\right)\left(\frac{256}{2\left(a+b+c\right)}\right)-98=30\)

\(\Leftrightarrow VT\ge30\)

Dấu '=' xảy ra khi \(\frac{8}{a+b}=\frac{5}{c+a}=\frac{3}{b+c}\)

\(\Leftrightarrow\frac{8}{a+b}=\frac{8}{a+b+2c}\)

hay c=0(vô lý)

=> Dấu bằng không xảy ra

=>ĐPCM

2 tháng 6 2021

Không mất tính tổng quát giả sử \(a\ge b\ge c>0\)

\(BĐT< =>\frac{a\left(b+c\right)\left(c+a\right)+b\left(a+b\right)\left(c+a\right)+c\left(a+b\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{3}{2}\)

\(< =>\frac{ac^2+ba^2+cb^2+\left(a+b+c\right)\left(ab+bc+ca\right)}{\left(a+b+c\right)\left(ab+bc+ca\right)-abc}\ge\frac{3}{2}\)

\(< =>2\left[ac^2+ba^2+cb^2+\left(a+b+c\right)\left(ab+bc+ca\right)\right]\ge3\left[\left(a+b+c\right)\left(...\right)-abc\right]\)

\(< =>2\left(ac^2+a^2b+cb^2\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-3abc\)

\(< =>ac^2+a^2b+cb^2\ge ca^2+ab^2+c^2b\)

\(< =>\left(c-b\right)\left(c-a\right)\left(a-b\right)\ge0\)(đúng)

Vậy ta có điều phải chứng minh

2 tháng 6 2021

Ta có bất đẳng thức sau \(\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge9\)( cm = bunhia phân thức )

\(< =>1+\frac{a+b}{b+c}+\frac{a+b}{c+a}+1+\frac{b+c}{a+b}+\frac{b+c}{c+a}+1+\frac{c+a}{a+b}+\frac{c+a}{b+c}\ge9\)

\(< =>\frac{a}{a+b}+\frac{2a}{b+c}+\frac{a}{c+a}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}+\frac{c}{b+c}+\frac{c}{c+a}\ge6\)(*)

Đặt \(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\);\(B=\frac{a}{a+c}+\frac{b}{b+a}+\frac{c}{c+b}\);\(C=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

Khi đó bất đẳng thức (*) tương đương với \(A+B+2C\ge6\)

Do\(A+B=3\)\(=>2C\ge3=>C\ge\frac{3}{2}\)

Suy ra \(A+B+C\ge6-\frac{3}{2}=\frac{12-3}{2}=\frac{9}{2}\)(1)

Xét tổng :\(B+C=\frac{a}{a+c}+\frac{b}{b+a}+\frac{c}{c+b}+\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a+b}{a+c}+\frac{c+a}{b+c}+\frac{b+c}{a+b}\ge3\)(AM-GM) (2)

Từ (1) và (2) ta được \(A\ge\frac{9}{2}-3=\frac{3}{2}\)

Done !