Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1-\dfrac{1}{1+a}\ge\dfrac{2017}{b+2017}+\dfrac{2018}{c+2018}\ge2\sqrt{\dfrac{2017.2018}{\left(b+2017\right)\left(c+2018\right)}}\)
\(1-\dfrac{2017}{b+2017}\ge\dfrac{1}{1+a}+\dfrac{2018}{b+2018}\ge2\sqrt{\dfrac{2018}{\left(1+a\right)\left(b+2018\right)}}\)
\(1-\dfrac{2018}{c+2018}\ge\dfrac{1}{1+a}+\dfrac{2017}{b+2017}\ge2\sqrt{\dfrac{2017}{\left(1+a\right)\left(b+2017\right)}}\)
Nhân vế:
\(\dfrac{abc}{\left(a+1\right)\left(b+2017\right)\left(c+2018\right)}\ge\dfrac{8.2017.2018}{\left(a+1\right)\left(b+2017\right)\left(c+2018\right)}\)
\(\Rightarrow abc\ge8.2017.2018\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(2.1;2.2017;2.2018\right)=...\)
Ta có:
\(\frac{1}{2a+3b+3c}=\frac{1}{\left(a+b\right)+\left(a+c\right)+\left(b+c\right)+\left(b+c\right)}\)
\(\le\frac{1}{16}.\left(\frac{1}{a+b}+\frac{1}{c+a}+\frac{2}{b+c}\right)\left(1\right)\)
Tương tự ta có: \(\hept{\begin{cases}\frac{1}{3a+2b+3c}\le\frac{1}{16}.\left(\frac{1}{b+c}+\frac{1}{a+b}+\frac{2}{c+a}\right)\left(2\right)\\\frac{1}{3a+3b+2c}\le\frac{1}{16}.\left(\frac{1}{c+a}+\frac{1}{b+c}+\frac{2}{a+b}\right)\left(3\right)\end{cases}}\)
Từ (1), (2), (3) \(\Rightarrow P\le\frac{1}{16}.\left(\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}\right)\)
\(=\frac{1}{4}.2017=\frac{2017}{4}\)
Với \(a=b=c=\frac{1}{3}\Rightarrow P=2019\)
Ta sẽ chứng minh \(P=2019\) là GTNN của \(P\)
Thật vậy \(2018\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{1}{3\left(a^2+b^2+c^2\right)}\ge2019\)
\(\Leftrightarrow2018\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-1\right)+\frac{\left(a+b+c\right)^2}{3\left(a^2+b^2+c^2\right)}-1\ge0\)
\(\Leftrightarrow2018\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-\left(a+b+c\right)\right)+\frac{\left(a+b+c\right)^2-3\left(a^2+b^2+c^2\right)}{3\left(a^2+b^2+c^2\right)}\ge0\)
\(\Leftrightarrow2018\left(\frac{\left(a-b\right)^2}{b}+\frac{\left(b-c\right)^2}{c}+\frac{\left(c-a\right)^2}{a}\right)-\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{3\left(a^2+b^2+c^2\right)}\ge0\)
\(\LeftrightarrowΣ_{cyc}\left(\left(a-b\right)^2\left(\frac{2018}{b}-\frac{1}{3\left(a^2+b^2+c^2\right)}\right)\right)\ge0\) *Luôn đúng*
\(\frac{a^2}{1+b}=\frac{a^2\left(1+b\right)-a^2b}{1+b}=a^2-\frac{a^2b}{1+b}\ge a^2-\frac{a^2b}{2\sqrt{b}}=a^2-\frac{a^2\sqrt{b}}{2}\) và tương tự
Ta có:
\(\frac{1}{1+a}+\frac{2017}{2017+b}+\frac{2018}{2018+c}\le1\)
\(\Leftrightarrow\frac{a}{1+a}\ge\frac{2017}{2017+b}+\frac{2018}{2018+c}\ge2\sqrt{\frac{2017.2018}{\left(2017+b\right)\left(2018+c\right)}}\left(1\right)\)
Tương tự ta cũng có:
\(\hept{\begin{cases}\frac{b}{2017+b}\ge2\sqrt{\frac{2018}{\left(1+a\right)\left(2018+c\right)}}\left(2\right)\\\frac{c}{2018+c}\ge2\sqrt{\frac{2017}{\left(1+a\right)\left(2017+b\right)}}\left(3\right)\end{cases}}\)
Lấy (1), (2), (3) nhân vế theo vế rút gọi ta được
\(abc\ge2\sqrt{2017.2018}.2.\sqrt{2018}.2.\sqrt{2017}=8.2017.2018\)