K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2016

\(\frac{a^2}{b}+b\ge2a;\frac{b^2}{c}+c\ge2b;\frac{c^2}{a}+a\ge2c\)(BĐT cô-si)
\(\Rightarrow\frac{a^2}{b}+b+\frac{b^2}{c}+c+\frac{c^2}{a}+a\ge2a+2b+2c\)
\(\Rightarrowđpcm\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

26 tháng 10 2015

Láo toét dám đăng bài của tạp chí Toán học và tuổi trẻ lên đây để hỏi hả ! Số mới ra mà hỏi thế này thì còn tính gì ! Khôn vừa thôi........

16 tháng 2 2016

Vì a, b, c là 3 cạnh của một tam giác nên a, b, c > 0 và a + b > c, b + c > a, c + a > b (ĐK).

Áp dụng BĐT Cauchy cho 2 số không âm, ta có :

\(a+b\ge2\sqrt{ab}\left(1\right)\)

\(b+c\ge2\sqrt{bc}\left(2\right)\)

\(c+a\ge2\sqrt{ca}\left(3\right)\)

Nhân (1), (2) và (3) theo vế, ta có :

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2^3.\sqrt{ab.bc.ca}=8abc\)

Mà theo đề bài (a+b)(b+c)(c+a)=8abc nên dấu "=" ở BĐT trên sẽ xảy ra, tức là khi và chỉ khi a = b = c (TMĐK) hay tam giác có 3 cạnh a, b, c thỏa mãn điều kiện trên là tam giác đều.

15 tháng 2 2016

bài này chỉ biết áp dụng cô-si thôi chứ ko biết chứng minh tam giác đều

11 tháng 1 2016

\(\left(a+b+c\right)^2-9ab\le\left(a+b+c\right)^2-9a^2=\left(a+b+c-3a\right)\left(a+b+c+3a\right)=\left(b+c-2a\right)\left(4a+b+c\right)\)

Vì \(a\ge b\ge c\Leftrightarrow b+c-2a\le0\)

\(\Rightarrow\left(a+b+c\right)^2-9ab\le0\)=> dpcm