Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài cho a,b,c,d khác 1 phải không?
Vì ac –a-c =b2-2b nên ac–a-c +1=b2-2b+1 hay (a-1).(c-1) =(b-1)2
suy ra: (a-1)/(b-1) =(b-1)/(c-1). (1)
Tương tự ta có (b-1).(d-1) =(c-1)2 suy ra: (b-1)/(c-1) =(c-1)/(d-1) (2)
Từ (1) và (2) suy ra: (a-1)/(b-1) = (c-1)/(d-1) = (a+c-2)/(b+d-2)=(a-c)/(b-d)
Suy ra : (a+c-2). (b-d) = (b+d-2).(a-c)
Khai triển, chuyển vế và rút gọn được: 2bc+2a+2d= 2ad +2b+2c
Suy ra: ad +b+c= bc+a+d
Ta có : \(3=ab+bc+ac\ge3\sqrt[3]{\left(abc\right)^2}\Rightarrow1\ge abc\)
\(\frac{bc}{a^2\left(b+2c\right)}+\frac{ac}{b^2\left(c+2a\right)}+\frac{ab}{c^2\left(a+2b\right)}\)
\(=\frac{\left(bc\right)^2}{abc\left(ab+2ac\right)}+\frac{\left(ac\right)^2}{abc\left(bc+2ab\right)}+\frac{\left(ab\right)^2}{abc\left(ca+2cb\right)}\)
\(\ge\frac{\left(ab+bc+ac\right)^2}{abc\left(3ab+3ac+3bc\right)}\)\(=\frac{3^2}{9abc}\)\(\ge1\)\(\left(dpcm\right)\)
đặt \(3^{13579}=m\).
Vì (3;13579)=1 nên (13579;m)=1 (*)
đem m+1 số \(13579;13579^2;...;13579^{m+1}\)chia cho m
Theo nguyên lý Dirichle trong m+1 số trên có ít nhất 2 số khi chia cho m có cùng số dư
Gọi 2 số đó là \(13579^x\&13579^y\)(tự đk cho x;y)
giả sử x>y
=>13579^x-13579^y chia hết cho m
=>\(13579^y\left(13579^{x-y}-1\right)\)chia hết cho m
mà 13579^y không chia hết cho m nên 13579^x-y -1 chia hết cho m
=>tồn tại n=x-y thỏa mãn đề bài
Hình như điều kiện là a, b, c, d khác 1 mới đúng
\(\left\{{}\begin{matrix}ac-a-c=b^2-2b\\bd-b-d=c^2-2c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}ac-a-c+1=b^2-2b+1\\bd-b-d+1=c^2-2c+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-1\right)\left(c-1\right)=\left(b-1\right)^2\\\left(b-1\right)\left(d-1\right)=\left(c-1\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-1\right)\left(c-1\right)=\left(b-1\right)^2\left(1\right)\\\left(c-1\right)^2=\left(b-1\right)\left(d-1\right)\left(2\right)\end{matrix}\right.\)
Do a, b, c, d khác 1 nên lấy (2) : (1) vế theo vế ta được
\(\Rightarrow\dfrac{c-1}{a-1}=\dfrac{d-1}{b-1}\)
\(\Rightarrow\left(c-1\right)\left(b-1\right)=\left(a-1\right)\left(d-1\right)\)
\(\Leftrightarrow bc-b-c+1=ad-a-d+1\)
\(\Leftrightarrow ad+b+c=bc+a+d\) (ĐPCM)
P/S: Nếu đk không phải là a, b, c, d khác 1 thì xét a,b,c,d bằng 1 thì dễ suy ra đpcm, sau đó xét a,b,c,d khác 1 thì giải như trên