K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2016

http://diendantoanhoc.net/topic/152549-t%C3%ADnh-fraca2a2-b2-c2-fracb2b2-c2-a2fracc2c2-b2-a2/

19 tháng 12 2016

http://diendantoanhoc.net/topic/152549-t%C3%ADnh-fraca2a2-b2-c2-fracb2b2-c2-a2fracc2c2-b2-a2/

19 tháng 12 2016

Ta có: \(a+b+c=0\)

\(\Rightarrow1\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a^2+b^2=-2ab+c^2\\b^2+c^2=-2bc+a^2\\c^2+a^2=-2ac+b^2\end{cases}}\)

\(\Rightarrow1A=\frac{a^2}{a^2+2bc-a^2}+\frac{b^2}{b^2+2ac-b^2}+\frac{c^2}{c^2+2ab-c^2}\)

\(=\frac{a^3+b^3+c^3}{2abc}=\frac{a^3+b^3+c^3-3abc+3abc}{2abc}\)

\(=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc}{2abc}\)

\(=\frac{3}{2}\)

5 tháng 6 2015

ta có a+b+c=0

<=>a=-(b+c)

      b=-(a+c)

      c=-(a+b)

=>a2+b2-c2=a2+b2-(-(a+b))2

                 =a2+b2-(a+b)2

                 =a2+b2-a2-b2-2ab=-2ab

b2+c2-a2=b2+c2-(-(b+c))2

             =b2+c2-(b+c)2

              =b2+c2-b2-c2-2bc=-2bc

a2+c2-b2=a2+c2-(-(a+c))2

             =a2+c2-(a+c)2

             =a2+c2-a2-c2-2ac=-2ac

=>Q=\(\frac{1}{-2ab}+\frac{1}{-2bc}+\frac{1}{-2ac}=\frac{c}{-2abc}+\frac{a}{-2abc}+\frac{b}{-2abc}=\frac{a+b+c}{-2abc}=0\)

26 tháng 6 2019

A=3

B=3

14 tháng 10 2018

\(a+b=c\Rightarrow\left(a+b\right)^2=c^2\Rightarrow a^2+2ab+b^2=c^2\Rightarrow a^2+b^2-c^2=-2ab\)

Tượng tự: \(b^2+c^2-a^2=2bc,c^2+a^2-b^2=2ac\)

Khi đó: \(B=\frac{-1}{2ab}+\frac{1}{2bc}+\frac{1}{2ac}=\frac{-c+a+b}{2abc}=0\)

Chúc bạn học tốt.

29 tháng 1 2017

a+b+c=0 =>a+b=-c =>(a+b)2=(-c)2=>a2+b2+2ab=c2=>a2+b2-c2=-2ab

tương tự , b2+c2-a2=-2bc ; c2+a2-b2=-2ca 

Thay vào P=1/-2ab + 1/-2bc + 1/-2ca = 0

6 tháng 1 2017

a)Ta có: ab+ac+bc=-7                        (ab+ac+bc)^2=49

nên

(ab)^2+(bc)^2+(ac)^2=49

nên a^4+b^4+c^4=(a^2+b^2+c^2)^2−2(ab)^2−2(ac)^2−2(bc^)2=98

b) (x^2+y^2+z^2)/(a^2+b^2+c^2)= 
=x^2/a^2+y^2/b^2+z^2/c^2 <=> 
x^2+y^2+z^2=x^2+(a^2/b^2)y^2+ 
+(a^2/c^2)z^2+(b^2/a^2)x^2+y^2+ 
+(b^2/c^2)z^2+(c^2/a^2)x^2+ 
+(c^2/b^2)y^2+z^2 <=> 
[(b^2+c^2)/a^2]x^2+[(a^2+c^2)/b^2]y^2+ 
+[(a^2+b^2)/c^2]z^2 = 0 (*) 
Đặt A=[(b^2+c^2)/a^2]x^2; B=[(a^2+c^2)/b^2]y^2; 
và C=[(a^2+b^2)/c^2]z^2 
Vì a,b,c khác 0 nên suy ra A,B,C đều không âm 
Từ (*) ta có A+B+C=0 
Tổng 3 số không âm bằng 0 thì cả 3 số đều phải bằng 0,tức A=B=C=0 
Vì a,b,c khác 0 nên [(b^2+c^2)/c^2]>0 =>x^2=0 =>x=0 
Tương tự B=C=0 =>y^2=z^2=0 => y=z=0 
Vậy x^2011+y^2011+z^2011=0 
Và x^2008+y^2008+z^2008=0.

12 tháng 4 2019

Có a + b + c = 0

=> a + b = - c

=> (a + b)2 = c2

=> a2 + b2 + 2ab = c2

=> a2 + b2 - c2 = - 2ab

Tương tự, b2 + c2 - a2 = - 2bc và c2 + a2 - b2 = - 2ca

Do đó \(A=\frac{ab}{-2ab}+\frac{bc}{-2bc}+\frac{ca}{-2ca}=-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}=-\frac{3}{2}\)

a+b+c=0=>a+b=-c=>a2+b2+2ab=c2=>a2+b2-c2=-2ab

Tương tự b2+c2-a2=-2bc,c2+a2-b2=-2ac

=>\(A=\frac{-ab}{2ab}+\frac{-bc}{2bc}+\frac{-ca}{2ca}=\frac{-3}{2}\)

a+b+c=0=> a2-b2-c2=2bc,b2-c2-a2=2ac,c2+a2-b2=-2ac,c2-a2-b2=2ab

=>\(P=\frac{a}{c}.\frac{2bc}{2ac}.\frac{-2ac}{2ab}=-1\)

14 tháng 4 2019

a+b+c=0 <=> a+b=-c; b+c=-a;c+a=-b

\(\frac{a^2-b^2-c^2}{b^2-c^2-a^2}=\frac{\left(a-c\right)\left(a+c\right)-b^2}{\left(b-a\right)\left(b+a\right)-c^2}=\frac{\left(a-c\right)\left(-b\right)-b^2}{\left(b-a\right)\left(-c\right)-c^2}=\frac{b\left(c-a-b\right)}{c\left(a-b-c\right)}\)

\(=\frac{b\left[c-\left(a+b\right)\right]}{c\left[a-\left(b+c\right)\right]}=\frac{b\left[c-\left(-c\right)\right]}{c\left[a-\left(-a\right)\right]}=\frac{b.2c}{c.2a}=\frac{b}{a}\)

***

\(\frac{c^2+a^2-b^2}{c^2-a^2-b^2}=\frac{\left(c-b\right)\left(c+b\right)+a^2}{\left(c-b\right)\left(c+b\right)-a^2}=\frac{\left(c-b\right)\left(-a\right)+a^2}{\left(c-b\right)\left(-a\right)-a^2}=\frac{a\left(a+b-c\right)}{a\left(b-c-a\right)}\)

\(=\frac{a+b-c}{b-\left(c+a\right)}=\frac{-c-c}{b-\left(-b\right)}=\frac{-2c}{2b}=\frac{-c}{b}\)

\(P=\frac{a}{c}.\frac{a^2-b^2-c^2}{b^2-c^2-a^2}.\frac{c^2+a^2-b^2}{c^2-a^2-b^2}=\frac{a}{c}.\frac{b}{a}.\frac{-c}{b}=-1\)