Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(1+a^2=ab+bc+ca+a^2=\left(a+b\right)\left(a+c\right).\) Chứng minh tương tự ta cũng có
\(1+b^2=\left(b+c\right)\left(b+a\right),1+c^2=\left(c+a\right)\left(c+b\right).\)
Suy ra \(\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}=\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}=\left|\left(a+b\right)\left(b+c\right)\left(c+a\right)\right|\) là một số hữu tỉ. (ĐCPM)
1) \(\frac{9}{x^2}+\frac{2x}{\sqrt{2x^2+9}}=1\left(ĐK:x\ne0\right)\)
Đặt: \(\sqrt{2x^2+9}=a\left(a\ge0\right)\)
\(\Leftrightarrow2x^2+9=a^2\Leftrightarrow9=a^2-2a^2\)
Khi đó pt đã cgo trở rhanhf:
\(\frac{a^2-2x^2}{x^2}+\frac{2x}{a}=1\)
\(\Leftrightarrow\left(\frac{a}{x}\right)^2-2+\frac{2x}{a}-1=0\)
\(\Leftrightarrow\left(\frac{a}{x}\right)^2+\frac{2x}{a}-3=0\) (*)
Đặt: \(\frac{a}{x}=b\) khi đó (*) trở thành:
\(b^2+\frac{2}{b}-3=0\)
\(\Leftrightarrow b^3+2-3b=0\)
\(\Leftrightarrow\left(b^3-b\right)-\left(2b-2\right)=0\)
\(\Leftrightarrow b\left(b-1\right)\left(b+1\right)-2\left(b-1\right)=0\)
\(\Leftrightarrow\left(b-1\right)\left(b^2+b-2\right)=0\)
\(\Leftrightarrow\left(b-1\right)^2\left(b+2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}b-1=0\\b+2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}b=1\\b=-2\end{array}\right.\)
Với: \(b=1\) ta có:
\(\frac{a}{x}=1\Leftrightarrow a=x\Leftrightarrow\sqrt{2x^2+9}=x\Leftrightarrow2x^2+9=x^2\Leftrightarrow x^2+9=0\left(loai\right)\)
Với: \(b=-2\) ta có:
\(\frac{a}{x}=-2\)
\(\Leftrightarrow a=-2x\)
\(\Leftrightarrow\sqrt{2x^2+9}=-2x\)
\(\Leftrightarrow2x^2+9=4x^2\)
\(\Leftrightarrow2x^2=9\)
\(\Leftrightarrow x^2=\frac{9}{2}\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{3}{\sqrt{2}}\\x=-\frac{3}{\sqrt{2}}\end{array}\right.\)
Thử lại ta thấy: \(x=\frac{3}{\sqrt{2}}\left(ktm\right);x=-\frac{3}{\sqrt{x}}\left(tm\right)\)
Vaayk pt đã cho có nhgieemj là \(x=-\frac{3}{\sqrt{2}}\)
Có: \(a+b+c+2\sqrt{abc}=1\Rightarrow\hept{\begin{cases}a+2\sqrt{abc}=1-b-c\\b+2\sqrt{abc}=1-a-c\\c+2\sqrt{abc}=1-a-b\end{cases}}\)
\(A=\sqrt{a\left(1-b\right)\left(1-c\right)}+\sqrt{b\left(1-c\right)\left(1-a\right)}+\sqrt{c\left(1-a\right)\left(1-b\right)}-\sqrt{abc}+2015\)
\(A=\sqrt{a\left(1-b-c+bc\right)}+\sqrt{b\left(1-a-c+ac\right)}+\sqrt{c\left(1-a-b+ab\right)}-\sqrt{abc}+2015\)
\(A=\sqrt{a\left(a+2\sqrt{abc}+bc\right)}+\sqrt{b\left(b+2\sqrt{abc}+ac\right)}+\sqrt{c\left(c+2\sqrt{abc}+ab\right)}-\sqrt{abc}+2015\)
\(A=\sqrt{\left(a^2+2a\sqrt{abc}+abc\right)}+\sqrt{\left(b^2+2b\sqrt{abc}+abc\right)}+\sqrt{\left(c^2+2c\sqrt{abc}+abc\right)}-\sqrt{abc}+2015\)
\(A=\sqrt{\left(a+\sqrt{abc}\right)^2}+\sqrt{\left(b+\sqrt{abc}\right)^2}+\sqrt{\left(c+\sqrt{abc}\right)^2}-\sqrt{abc}+2015\)
\(A=a+\sqrt{abc}+b+\sqrt{abc}+c+\sqrt{abc}-\sqrt{abc}+2015\)
\(A=a+b+c+2\sqrt{abc}+2015\)
\(A=1+2015=2016\)
Vậy:....
\(2\left(1+abc\right)+\sqrt{2\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)
\(=2\left(1+abc\right)+\sqrt{\left[\left(a+1\right)^2+\left(1-a\right)^2\right]\left[\left(b+c\right)^2+\left(bc-1\right)^2\right]}\)
\(\ge2\left(1+abc\right)+\left(a+1\right)\left(b+c\right)+\left(1-a\right)\left(bc-1\right)\)
\(=\left(1+a\right)\left(1+b\right)\left(1+c\right)\)
\(2\left(1+abc\right)+\sqrt{2\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}.\)
\(=2\left(1+abc\right)+\sqrt{\left[\left(a+1\right)^2+\left(1-a\right)^2\right]\left[\left(b+c\right)^2+\left(bc-1\right)^2\right]}\)
\(\ge2\left(1+abc\right)+\left(a+1\right)\left(b+c\right)+\left(1-a\right)\left(bc-1\right)\)
\(=\left(1+a\right)\left(1+b\right)\left(1+c\right)\)
E hổng biết cách này có đúng ko nữa:((
5
Ta có:\(S=\frac{2010}{x}+\frac{1}{2010y}+\frac{1010}{1005}\ge2\sqrt{\frac{2010}{x}\cdot\frac{1}{2010y}}+\frac{1010}{1005}\left(AM-GM\right)\)
\(=\frac{2}{\sqrt{xy}}+\frac{2010}{1005}\ge\frac{2}{\frac{x+y}{2}}+2=4\)( AM-GM ngược dấu )
Dấu "=" xảy ra khi \(x=y=\frac{2010}{4024}\)
thay trực tiếp giả thiết ta có
\(\sqrt{\left(a^2+1\right)}=\sqrt{a^2+ab+bc+ac}=\sqrt{a\left(a+b\right)+c\left(a+b\right)}=\sqrt{\left(a+c\right)\left(a+b\right)}\)
tương tự ta có
\(\sqrt{b^2+1}=\sqrt{\left(b+a\right)\left(b+c\right)}\)
\(\sqrt{c^2+1}=\sqrt{\left(c+a\right)\left(c+b\right)}\)
nên
\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}=\sqrt{\left(\left(a+b\right)\left(a+c\right)\left(b+c\right)\right)^2}=\left|\left(a+b\right)\left(a+c\right)\left(b+c\right)\right|\)
mà \(a,b,c\in Q\) nên \(\left|\left(a+b\right)\left(a+c\right)\left(b+c\right)\right|\in Q\Rightarrowđpcm\)