Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔADM có
AB=AD
BM=DM
AM chung
Do đó: ΔABM=ΔADM
b: ta có: ΔABM=ΔADM
=>\(\widehat{BAM}=\widehat{DAM}\)
=>\(\widehat{BAK}=\widehat{DAK}\)
Xét ΔABK và ΔADK có
AB=AD
\(\widehat{BAK}=\widehat{DAK}\)
AK chung
Do đó: ΔABK=ΔADK
=>BK=DK
c: Ta có: ΔABK=ΔADK
=>\(\widehat{ABK}=\widehat{ADK}\)
Ta có: \(\widehat{ABK}+\widehat{EBK}=180^0\)(hai góc kề bù)
\(\widehat{ADK}+\widehat{CDK}=180^0\)(hai góc kề bù)
mà \(\widehat{ABK}=\widehat{ADK}\)
nên \(\widehat{EBK}=\widehat{CDK}\)
Xét ΔKEB và ΔKDC có
KB=KD
\(\widehat{KBE}=\widehat{KDC}\)
BE=DC
Do đó: ΔKEB=ΔKDC
=>\(\widehat{BEK}=\widehat{CDK}\)
ΔKEB=ΔKDC
=>\(\widehat{BKE}=\widehat{DKC}\)
mà \(\widehat{DKC}+\widehat{BKD}=180^0\)(hai góc kề bù)
nên \(\widehat{BKE}+\widehat{BKD}=180^0\)
=>E,K,D thẳng hàng
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
\(a,\left\{{}\begin{matrix}AM=DM\\BM=MC\\\widehat{AMB}=\widehat{DMC}\end{matrix}\right.\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\\ b,\Delta ABM=\Delta DCM\Rightarrow\widehat{B}=\widehat{MCD}\)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow AB\text{//}CD\\ c,\left\{{}\begin{matrix}AB=AC\\BM=MC\\AM\text{ chung}\end{matrix}\right.\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\\ \Rightarrow\widehat{BAM}=\widehat{CAM}\\ \Rightarrow AM\text{ là p/g }\widehat{A}\\ d,\Delta AMB=\Delta AMC\Rightarrow\widehat{AMB}=\widehat{AMC}\\ \text{Mà }\widehat{AMB}+\widehat{AMC}=180^0\\ \Rightarrow\widehat{AMB}=90^0\\ \Rightarrow AM\bot BC\)
Mà M là trung điểm BC nên AM là trung trực BC
a) Xét △ABM vuông tại A và △DBM vuông tại D có:
BM chung
AB=DB=3cm(gt)
=> △ABM=△DBM (cạnh huyền-cạnh góc vuông) => AM=DM(2 cạnh t/ứ)
b) Xét △AMN và △DMC có:
AMN=DMC(2 góc đối đỉnh)
AM=DM(cmt)
MAN=MDC(gt)
=> △AMN=△DMC(g.c.g) => MN=MC(2 cạnh tướng ứng) => △MCN cân tại M
c) Vì △AMN=△DMC(cmt) => AN=DC(2 cạnh tương ứng)
Ta có AB=BD;AN=DC;BN=AN+AB;BC=BD+DC => BN=BC=> △BNC cân tại B
Vì △ABM=△DBM(cmt)=> ABM=DBM=> NBK=CBK (A thuộc BN; D thuộc BC;M thuộc BK) => BK là phân giác NBC
=> Trong △BNC cân tại B, BK là đường phân giác, đường trung trực, đường trung tuyến, đường cao,... (t/c) => BK là đường trung trực của CN
d) Áp dụng định lý Pytago vào △ABC vuông tại A có: AB2+AC2=BC^2
=> 9+16=25=BC^2 (cm) => BC = 5 cm
Ta có BD+DC=BC;BD=3cm=> DC=2cm
Ta có AN=DC(cmt) => AN=2cm
Áp dụng định lý Pytago vào △ANC vuông tại A có:
AN^2+AC^2=NC^2
=> 4+16=NC^2
=> NC= căn 20 = 2 x căn 5 (cm)
Vì BK là trung trực NC => K là trung điểm NC => KC = 1/2 NC = căn 5 (cm)
Áp dụng định lý Pytago vào △BKC vuông tại K có:
BC^2=BK^2+KC^2 => BK^2=BC^2+KC^2=25-5=20cm => BK=căn 20=2 nhânnhân căn 5 (cm)
a: Xét ΔABM và ΔADM có
AB=AD
\(\widehat{BAM}=\widehat{DAM}\)
AM chung
Do đó: ΔABM=ΔADM
b: Xét ΔABD có AB=AD
nên ΔABD cân tại A
Ta có: ΔABD cân tại A
mà AI là đường phân giác
nên AI\(\perp\)BD tại I
c: ΔABM=ΔADM
=>\(\widehat{ABM}=\widehat{ADM}\)
Ta có: \(\widehat{ABM}+\widehat{HBM}=180^0\)(hai góc kề bù)
\(\widehat{ADM}+\widehat{CDM}=180^0\)(hai góc kề bù)
mà \(\widehat{ABM}=\widehat{ADM}\)
nên \(\widehat{HBM}=\widehat{CDM}\)
ΔABM=ΔADM
=>MB=MD
Xét ΔMBH và ΔMDC có
\(\widehat{MBH}=\widehat{MDC}\)
MB=MD
\(\widehat{BMH}=\widehat{DMC}\)
Do đó: ΔMBH=ΔMDC
d: ΔMBH=ΔMC
=>BH=DC và MH=MC
AB+BH=AH
AD+DC=AC
mà AB=AD và BH=DC
nên AH=AC
=>A nằm trên đường trung trực của HC(1)
MH=MC
=>M nằm trên đường trung trực của HC(2)
PH=PC
=>P nằm trên đường trung trực của HC(3)
Từ (1),(2),(3) suy ra A,P,M thẳng hàng