Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự kẻ hình nghen :33333
a) Xét tam giác AHB và tam giác AHC có
AH chung
AHC=AHB(=90 độ)
AB=AC(gt)
=> tam giác AHB= tam giac AHC(ch-cgv)
b) từ tam giác AHB= tam giác AHC=> A1=A2( hai góc tương ứng )
Xét tam giác AMH và tam giác ANH có
A1=A2(cmt)
AH chung
AMH=ANH(=90 độ)
=> tam giấcMH=tam giác ANH(ch-gnh)
=> AM=AN( hai cạnh tương ứng)
=> tam giác AMN cân A
c) vì tam giác AMN cân A
=> AMN=ANM=(180-MAN)/2
vì tam giác ABC cân A
=> ABC=ACB=(180-BAC)/2
=> AMN=ABC mà AMN đồng vị với ABC=> MN//BC
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>góc BAH=góc CAH
=>AH là phân giác của góc BAC
b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
góc MAH=góc NAH
=>ΔAMH=ΔANH
=>AM=AN và MH=MN
=>AH là trung trực của MN
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
\(\widehat{MAH}=\widehat{NAH}\)
Do đó: ΔAMH=ΔANH
Suy ra: AM=AN và HM=HN
=>AH là đường trung trực của MN
Bài 5:
a) Chứng minh ∆AHB = ∆AHC và AH là tia phân giác của góc BAC.
Vì ∆ABC cân tại A nên:
- AB = AC (1)
- Góc ABC = góc ACB (2)
Xét ∆AHB và ∆AHC có:
- Cạnh AH chung
- AB = AC (từ (1))
- Góc AHB = góc AHC (từ (2) và AH ⊥ BC)
Vậy ∆AHB = ∆AHC (c.g.c)
Suy ra:
- HB = HC
- Góc BAH = góc CAH
Do đó, AH là tia phân giác của góc BAC.
b) Chứng minh AH vuông góc với MN
Xét ∆AHM và ∆AHN có:
- AH chung
- Góc AHM = góc AHN (= 90 độ)
- AM = AN (vì AH là tia phân giác của góc BAC)
Vậy ∆AHM = ∆AHN (cạnh huyền - góc nhọn)
Suy ra: HM = HN
Do đó, AH là đường trung trực của MN.
Vậy AH vuông góc với MN.
c) Chứng minh P, Q, K thẳng hàng
Vì H là trung điểm của MP nên HP = HM.
Xét ∆HMP và ∆HNP có:
- HP = HN (cmt)
- MH = NH (cmt)
- NP chung
Vậy ∆HMP = ∆HNP (c.c.c)
Suy ra: góc MHP = góc NHP = 90 độ.
Do đó, PQ ⊥ MH và PQ ⊥ NH.
Mà AH ⊥ MN nên PQ // AH (1)
Ta lại có: K ∈ MN và AH ⊥ MN nên K ∈ PQ (2)
Từ (1) và (2) suy ra: PQ đi qua điểm K.
Vậy P, Q, K thẳng hàng.
a: Xet ΔAHB và ΔAHC có
AB=AC
AH chung
HB=HC
=>ΔAHB=ΔAHC
b: Xet ΔAMH vuông tại M và ΔANH vuông tại N co
AH chung
góc MAH=góc NAH
=>ΔAMH=ΔANH
=>AM=AN và HM=HN
=>ΔHMN cân tại H
c: Xét ΔABC có AM/AB=AN/AC
nên MN//CB
Hình tự vẽ
GT | △ABC cân: AB = AC = 5 cm. HB = HC. AH = 4cm HM ⊥ AB tại M , HN ⊥ AC tại N. tia vuông góc với AB tại B cắt AH tại E |
KL | a, △AHB = △AHC b, BC = ? c, △HNM cân d, EC = EB |
Bài làm:
a, Xét △AHB và △AHC
Có: AB = AC (gt)
HB = HC (gt)
AH là cạnh chung
=> △AHB = △AHC (c.c.c)
b, Vì △AHB = △AHC (cmt) => AHB = AHC (2 góc tương ứng)
Mà AHB + AHC = 180o (2 góc kề bù)
=> AHB = AHC = 180o : 2 = 90o
Xét △AHB vuông tại tại H có: AB2 = AH2 + BH2
=> 52 = 42 + BH2
=> 25 = 16 + BH2
=> BH2 = 9
=> BH = 3
Mà BH = HC (gt)
=> HC = 3
Ta có: BC = BH + HC = 3 + 3 = 6
c, Vì △ABC cân có: AB = AC
=> △ABC cân tại A
=> ABC = ACB
Xét △MBH vuông tại M và △NCH vuông tại N
Có: HB = HC (gt)
MBH = NCH (cmt)
=> △MBH = △NCH (cg-gn)
=> HM = HN (2 cạnh tương ứng)
=> △HMN cân tại H
d, Vì △AHB = △AHC (cmt)
=> HAB = HAC (2 góc tương ứng)
Xét △ABE và △ACE
Có: AB = AC (gt)
BAE = CAE (cmt)
AE là cạnh chung
=> △ABE = △ACE (c.g.c)
=> EB = EC (2 cạnh tương ứng)
a: Xét ΔAHB vàΔAHC có
AH chung
HB=HC
AB=AC
Do đó: ΔAHB=ΔAHC
b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
góc MAH=góc NAH
Do đó; ΔAMH=ΔANH
Suy ra: HM=HN và AM=AN
c: Xét ΔABC có AM/AB=AN/AC
nên MN//BC