K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2021

a) Ta có:ΔABC vuông tại A 

➩ BC2=AC2+AB2(Định lý Pytago)

     BC2=82+62

     BC2=64+26=100

➩ BC\(=\sqrt{100}=10cm\)

b) Sai đề

12 tháng 5 2021

sai đề

12 tháng 5 2021

Cho tam giác  ABC  vuông tại A có AB=6 cm , AB =8cm . Trên BA lấy  điểm D sao cho BD=BC .Từ D kẻ DE vuông góc với BC tại E (E thuộc BC)

a)Tính độ dài cạnh BC

b)Chứng minh tam giác BAC = BED

c) Gọi H là giao điểm của DE và CA. Chứng minh BH là tia phân giác của góc DBC

B A D H E C

a) Xét \(\Delta ABC\) vuông tại A có: \(BC^2=AB^2+AC^2\) (định lí Pytago)

\(\Rightarrow BC=6^2+8^2=100\)

\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)

Vậy \(BC=10cm\).

b) Xét \(\Delta BDE\) và \(\Delta ABC\) có:

\(\widehat{BAC}=\widehat{BED}=90^o\)

\(AB=AC\left(gt\right)\)

\(\widehat{B}\) chung

\(\Rightarrow\Delta ABC=\Delta EBD\) (cạnh huyền - góc nhọn)   (đpcm)

c) Xét \(\Delta BCD\) có:

2 đường cao CA và DE cắt nhau tại H

\(\Rightarrow\)H là trực tâm của \(\Delta BCD\)

\(\Rightarrow BH\) là đường cao của \(\Delta BCD\)  (1)

Vì AB = AC nên \(\Delta BCD\) cân tại B  (2)

Từ (1), (2) \(\Rightarrow\) BH là đường cao đồng thời là tia phân giác của \(\widehat{CBD}\)   (đpcm)

12 tháng 5 2021

các bạn ơi AC=8cm nhá 

  MÌNH  nghi bài náy sai đề mà cô hốí quá......giúp mình vs

19 tháng 5 2017

A B C D E M N O I 1 2 d

a) Ta có:  ^ECN=^ACB (Đối đỉnh). Mà tam giác ABC cân tại A => ^ACB=^ABC => ^ECN=^ABC hay ^ECN=^DBM.

Xét tam giác ECN và tam giác DBM có: 

^DMB=^ENC=900

CE=BD                     => Tam giác ECN=Tam giác DBM (Cạnh huyền góc nhọn)

^ECN=^DBM

=> CN=BM (2 cạnh tương ứng) => CN+MC=BM+MC (Cộng mỗi vế với MC) => MN=BC (đpcm)

Tam giác ECN=Tam giác DBM (cmt) => EN=DM (2 cạnh tương ứng)

DM và EN đều vuông góc với BC => DM//EN => ^MDI=^NEI (So le trong)

Xét tam giác DMI và tam giác ENI có:

^DMI=^ENI=900

DM=EN (cmt)      => Tam giác DMI=Tam giác ENI (g.c.g)

^NDI=^NEI

=> DI=EI => I là trung điểm của DE (đpcm)

b) AO là phân giác của ^BAC => ^A1=^A2.

Xét tam giác ABO và tam giác ACO có:

AB=AC

^A1=^A2         => Tam giác ABO=Tam giác ACO (c,g,c)

AO chung

=>  ^ABO=^ACO (2 góc tương ứng) (1)

Do tam giác ABC cân tại A và AO là đường phân giác => AO cũng là đương trung trực của tam giác ABC.

=> OB=OC (Tính chất đường trung trực của đoạn thẳng)

Ta có: Điểm O thuộc d, d là trung trực của DE => OD=OE

Xét tam giác DBO và tam giác ECO có:

OB=OC

BD=CE    => Tam giác DBO=Tam giác ECO (c.c.c)

OD=OE

=> ^DBO=^ECO (2 góc tương ứng) hay ^ABO=^ECO (2)

Từ (1) và (2) => ^ACO=^ECO. Mà 2 góc này là 2 góc kề bù => ^ACO=^ECO=900

=> OC vuông góc với AE hay OC vuông góc AC (đpcm).

13 tháng 5 2019

a) Áp dụng định lí Pytago vào \(\Delta ABC\)ta có:

\(BC^2=AB^2+AC^2\)Hay \(BC=\sqrt{6^2+8^2=10}\)

Ủng hộmi nha

13 tháng 5 2019

A B C D E

a) Xét \(\Delta ABC\)vuông tại A, AB = 6cm; AC = 8cm

\(\Rightarrow BC^2=AB^2+AC^2\)

     \(BC^2=6^2+8^2\)

     \(BC^2=36+64\)

    \(BC^2=100\)

    \(BC=10\)

Suy ra cạnh BC = 10cm

b) Xét \(\Delta BAC\)và \(\Delta BED\)ta có:

      \(\widehat{BAC}=\widehat{DEB}=90^o\)

         \(\widehat{B}\)chung

       \(BD=BC\left(gt\right)\)

\(\Rightarrow\Delta BAC=\Delta BED\)

Vậy...     

9 tháng 4 2019

a, áp dụng định lí py-ta-go ta có:

          \(AB^2+AC^2=BC^2\)

=>\(BC^2\)=64+36=100(cm)

=>BC=10cm

vậy  BC=10cm

b,xét 2t.giác vuông ABE và DBE có:

          EB chung

          AB=BD(gt)

=>t.giác ABE=t.giác DBE(cạnh huyền-cạnh góc vuông)

c,xét 2 t.giác vuông  AEF và t.giác DEC có:

            AE=DE(theo câu b)

            \(\widehat{AEF}\)=\(\widehat{DEC}\)(vì đối đỉnh)

=>t.giác AEF=t.giác DEC(cạnh góc vuông-góc nhọn)

=>AF=DC mà BA=BD(gt) suy ra BF=BC

d,gọi O là giao điểm của BE và CF 

xét t.giác BFO và t.giác BCO có:

            BF=BC(theo câu c)

            \(\widehat{FBO}\)=\(\widehat{CBO}\)(theo câu b)

            BO cạnh chung

=> t.giác BFO=t.giác BCO(c.g.c)

=>CO=OF =>O là trung điểm của CF(1); \(\widehat{COB}\)=\(\widehat{FOB}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{COB}\)=\(\widehat{FOB}\)=90 độ =>BO\(\perp\)CF(2)

Từ (1) và (2) suy ra BE là trung trực của CF

học tốt!

          

9 tháng 2 2019

a)Xét ΔABD và ΔEBD có:

AB=BE(gt)

ABDˆ=EBDˆ(gt)ABD^=EBD^(gt)

BD:cạnh chung

=> ΔABD=ΔEBD(c.g.c)

=> BADˆ=BEDˆ=90oBAD^=BED^=90o

=> DE⊥BCDE⊥BC

Vì: ΔABD=ΔEBD(cmt)

=>AD=DE

Vì: AB=BE(gt) ; AD=DE(cmt)

=> B,D thuộc vào đường trung trực của đt AE

=>BD là đường trung trực của đt AE

=>AE⊥BDAE⊥BD

b) Xét ΔDEC vuông tại E(cmt)

=> DE<DCDE<DC

Mà: DE=AD

=> AD<DC

c)Vì: BF=BA+AF ; BC=BE+EC

Mà: BF=BC(gt); BE=BA(gt)

=>AF=EC

Xét ΔADF và ΔEDC có:

AF=EC(cmt)

FADˆ=DECˆ=90o(cmt)FAD^=DEC^=90o(cmt)

AD=DE(cmt)

=>ΔADF=ΔEDC(c.g.c)