K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2017

\(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{a}{ab+a+1}+\dfrac{b}{\dfrac{b}{ab}+b+1}+\dfrac{\dfrac{1}{ab}}{\dfrac{a}{ab}+\dfrac{1}{ab}+1}\)

\(=\dfrac{a}{ab+a+1}+\dfrac{ab}{1+ba+a}+\dfrac{1}{a+1+ab}=\dfrac{ab+a+1}{ab+a+1}=1\)

18 tháng 12 2017

\(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+abc}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{b\left(c+1+ac\right)}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{1}{b+1+bc}+\dfrac{1}{c+1+ac}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{ac}{abc+ac+abc.c}+\dfrac{1}{ac+c+1}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{ac}{1+ac+c}+\dfrac{1}{ac+c+c}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{ac+1+c}{ac+c+1}=1\) (đpcm)

28 tháng 1 2023

\(A=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)

\(A=\dfrac{a^2bc}{ab+a^2bc+abc}+\dfrac{b}{bc+b+abc}+\dfrac{c}{ac+c+1}\)

\(A=\dfrac{a^2bc}{ab\left(1+ac+c\right)}+\dfrac{b}{b\left(c+1+ac\right)}+\dfrac{c}{ac+c+1}\)

\(A=\dfrac{ac+1+c}{ac+c+1}\)

\(A=1\)

 

28 tháng 1 2023

\(A=\dfrac{ab}{ab+a+1}+\dfrac{bc}{bc+b+1}+\dfrac{ca}{ca+c+1}\)

\(A=\dfrac{abc}{abc+ac+c}+\dfrac{bc}{bc+b+abc}+\dfrac{ca}{ca+c+1}\)

\(A=\dfrac{1}{1+ac+c}+\dfrac{c}{c+1+ac}+\dfrac{ca}{ca+c+1}\)

\(A=1\)

18 tháng 12 2020

Lười đánh máy thật sự, buốt tay lắm:((

Ta có: \(Q=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)

\(Q=\dfrac{ac}{c\left(ab+a+1\right)}+\dfrac{abc}{ac\left(bc+b+1\right)}+\dfrac{c}{ac+c+1}\)

\(Q=\dfrac{ac}{abc+ac+c}+\dfrac{abc}{abc^2+abc+ac}+\dfrac{c}{ac+c+1}\)

\(Q=\dfrac{ac}{1+ac+c}+\dfrac{1}{c+a+ac}+\dfrac{c}{ac+c+1}\)

\(Q=\dfrac{ac+1+c}{1+ac+c}=1\)

Vậy Q=1

18 tháng 12 2020

Q=ab+a+1a​+bc+b+1b​+ac+c+1c​

Q=\dfrac{ac}{c\left(ab+a+1\right)}+\dfrac{abc}{ac\left(bc+b+1\right)}+\dfrac{c}{ac+c+1}Q=c(ab+a+1)ac​+ac(bc+b+1)abc​+ac+c+1c​

Q=\dfrac{ac}{abc+ac+c}+\dfrac{abc}{abc^2+abc+ac}+\dfrac{c}{ac+c+1}Q=abc+ac+cac​+abc2+abc+acabc​+ac+c+1c​

Q=\dfrac{ac}{1+ac+c}+\dfrac{1}{c+a+ac}+\dfrac{c}{ac+c+1}Q=1+ac+cac​+c+a+ac1​+ac+c+1c​

Q=\dfrac{ac+1+c}{1+ac+c}=1Q=1+ac+cac+1+c​=1

chúc bạn thi tốt

26 tháng 1 2022

nhân cả vế với abc ta có điều cần chứng minh

\(\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ac\right)^2}{b\left(a+c\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\ge\dfrac{ab+bc+ac}{2}\)

VT\(\ge\)\(\dfrac{\left(bc+ac+ab\right)^2}{2\left(ab+bc+ac\right)}=\dfrac{bc+ac+ab}{2}\)

=>(đpcm)

mấu chốt nằm ở đoạn chứng minh\(\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ac\right)^2}{b\left(a+c\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\) 

chỉ cần chứng minh được \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)sau đó áp dụng để chứng minh cái kia thôi cái này bạn thử tự chứng minh nhé

 

 

26 tháng 1 2022

 

 

28 tháng 3 2022

Ta có : \(a^2+ab=c^2+bc\Leftrightarrow a^2-c^2+b\left(a-c\right)=0\)

\(\Leftrightarrow\left(a-c\right)\left(a+b+c\right)=0\Leftrightarrow a-c=0\) ( do a;b;c \(\ne0\Rightarrow a+b+c\ne0\) )

\(\Leftrightarrow a=c\)

Làm tương tự ; ta có : a = b . Suy ra : a = b = c 

\(A=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=6\)

Vậy ... 

28 tháng 3 2022

Ta có : a2+ab=c2+bc⇔a2−c2+b(a−c)=0a2+ab=c2+bc⇔a2−c2+b(a−c)=0

⇔(a−c)(a+b+c)=0⇔a−c=0⇔(a−c)(a+b+c)=0⇔a−c=0 ( do a;b;c ≠0⇒a+b+c≠0≠0⇒a+b+c≠0 )

⇔a=c⇔a=c

Làm tương tự ; ta có : a = b . Suy ra : a = b = c 

A=(1+ab)(1+bc)(1+ca)=(1+1)(1+1)(1+1)=6A=(1+ab)(1+bc)(1+ca)=(1+1)(1+1)(1+1)=6

Vậy ... 

10 tháng 2 2021

Xét hiệu VT - VP

\(\dfrac{a+b}{bc+a^2}+\dfrac{b+c}{ab+b^2}+\dfrac{c+a}{ab+c^2}-\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}=\dfrac{a^2+ab-bc-a^2}{a\left(bc+a^2\right)}+\dfrac{b^2+bc-ac-b^2}{b\left(ac+b^2\right)}+\dfrac{c^2+ac-ab-c^2}{c\left(ab+c^2\right)}=\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}+\dfrac{c\left(b-a\right)}{b\left(ac+b^2\right)}+\dfrac{a\left(c-b\right)}{c\left(ab+c^2\right)}\)

Do a,b,c bình đẳng nên giả sử a\(\ge\)b\(\ge\)c, khi đó \(b\left(a-c\right)\)\(\ge\)0, c(b-a)\(\le\)0, a(c-b)\(\le\)0

\(a^3\ge b^3\ge c^3=>abc+a^3\ge abc+b^3\ge abc+c^3\)=>\(\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}\le\dfrac{b\left(a-c\right)}{b\left(ac+b^2\right)}\)

=> VT -VP \(\le\) \(\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}+\dfrac{c\left(b-a\right)}{b\left(ac+b^2\right)}+\dfrac{a\left(c-b\right)}{c\left(ab+c^2\right)}=\dfrac{ab-ac}{b\left(ac+b^2\right)}+\dfrac{ac-ab}{c\left(ab+c^2\right)}=\dfrac{a\left(b-c\right)}{b\left(ac+b^2\right)}-\dfrac{a\left(b-c\right)}{c\left(ab+c^2\right)}\)

mà \(\dfrac{1}{b\left(ac+b^2\right)}\le\dfrac{1}{c\left(ab+c^2\right)}\) nên VT-VP <0 đpcm

 

10 tháng 2 2021

$a,b,c$ ở đây chỉ có vai trò là hoán vị thôi nên không được giả sử $a\ge b\ge c$ đâu ạ. Nên cách này chưa trọn vẹn.