K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2019

Từ \(a+b+c=1\) thế vào biểu thức sau

\(\left(\frac{1}{a}-1\right)\left(\frac{1}{b}-1\right)\left(\frac{1}{c}-1\right)=\left(\frac{a+b+c}{a}-\frac{a}{a}\right)\left(\frac{a+b+c}{b}-\frac{b}{b}\right)\left(\frac{a+b+c}{c}-\frac{c}{c}\right)\)

\(=\frac{b+c}{a}.\frac{a+c}{b}.\frac{a+b}{c}=\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)(1)

Với a,b,c>0 , Áp dụng bất đẳng thức AM-GM (cauchy) cho hai số không âm ta có:

\(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};a+c\ge2\sqrt{ac}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8abc\)(2)

Từ (1) và (2) suy ra \(\left(\frac{1}{a}-1\right)\left(\frac{1}{b}-1\right)\left(\frac{1}{c}-1\right)\ge\frac{8abc}{abc}=8\)

Dấu '=' xảy ra khi \(\hept{\begin{cases}a=b=c\\a+b+c=1\end{cases}\Leftrightarrow}a=b=c=\frac{1}{3}\)

8 tháng 7 2019

mình wên nữa: đừng ti ck cho câu trả lời này nhé

\(\left(\frac{1}{a}-1\right)\left(\frac{1}{b}-1\right)\left(\frac{1}{c}-1\right)\ge8\Leftrightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge8abc\)

\(\Leftrightarrow1-\left(a+b+c\right)+\left(ab+bc+ca\right)-abc\ge8abc\)

\(\Leftrightarrow ab+bc+ca\ge9abc\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)Điều này luôn đúng vì:

Áp dụng BĐT Cauchy cho 3 số dương: \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow\sqrt[3]{abc}\le\frac{1}{3}\Leftrightarrow\frac{1}{\sqrt[3]{abc}}\ge3\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3}{\sqrt[3]{abc}}\ge3.3=9\)-----> ĐPCM

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

30 tháng 9 2016

Ta có \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)

Áp dụng bđt Cauchy, ta có : \(a+b\ge2\sqrt{ab}\) ; \(b+c\ge2\sqrt{bc}\)\(c+a\ge2\sqrt{ac}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

\(\Rightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\ge8\)

Vậy \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\ge8\)(đpcm)

Đề của bạn chưa đúng nhé :)

2 tháng 10 2016

viết nhầm đề @@

15 tháng 8 2019

\(\frac{1}{a}-1=\frac{a+b+c}{a}-\frac{a}{a}=\frac{b+c}{a}\)

Tương tự : \(\frac{1}{b}-1=\frac{c+a}{b};\frac{1}{c}-1=\frac{a+b}{c}\)

Nhân theo vế ta đc :

\(VT=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)

Áp dụng bđt Cauchy :

\(VT\ge\frac{8abc}{abc}=8\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

6 tháng 8 2019

Để ý rằng a, b, c > 0 nên abc > 0, khi đó chia hai vế của bđt cho abc thì sẽ xuất hiện \(\frac{1}{a};\frac{1}{b};\frac{1}{c}\). Đặt ẩn phụ + biến đổi + Cô si cho 6 số thì bài toán đâu đến nổi khó ...

BĐT \(\Leftrightarrow\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\ge\frac{8}{abc}\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\). Bài toán trở thành:

Cho x, y, z > 0 thỏa mãn x + y + z = 3. Chứng minh:

\(\left(x+1\right)\left(y+1\right)\left(z+1\right)\ge8xyz\)

Nhân hai vế của BĐT với 27, ta cần chứng minh:

\(\left(3x+3\right)\left(3y+3\right)\left(3z+3\right)\ge216xyz\)

\(\Leftrightarrow\left(x+x+x+x+y+z\right)\left(y+y+y+x+y+z\right)\left(z+z+z+x+y+z\right)\ge216xyz\)

Đơn giản chưa:v Cô si cho 6 số ở mỗi cái ngoặc là ra:D Cách này mà sai thì em chịu đấy nhé;) Tự c/m Cô si cho 6 số.

6 tháng 8 2019

a lm phần cô-si 6 số đi

NV
1 tháng 3 2020

Sử dụng BĐT: \(\left(x+y+z\right)^3\ge27xyz\Rightarrow\left(\frac{x+y+z}{3}\right)^3\ge xyz\)

\(\Rightarrow\left(\frac{1+a+1+b+1+c}{3}\right)^3\ge\left(1+a\right)\left(1+b\right)\left(1+c\right)\)

Ta có: \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge3\sqrt[3]{\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

\(\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}\ge3\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

Cộng vế với vế:

\(1\ge\frac{1+\sqrt[3]{abc}}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)

Dấu "=" 3 BĐT trên xảy ra khi \(a=b=c\)

Lại có:

\(1+\sqrt[3]{abc}\ge2\sqrt{\sqrt[3]{abc}}\Rightarrow\left(1+\sqrt[3]{abc}\right)^3\ge\left(2\sqrt{\sqrt[3]{abc}}\right)^3=8\sqrt{abc}\)Dấu "=" xảy ra khi \(a=b=c=1\)