\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2017

Lời giải +HD chi tiết

\(A=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(A=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(a+b+c\right)\) {vì (a+b+c=1}

\(A=\left(\dfrac{a+b+c}{a}\right)+\left(\dfrac{a+b+c}{b}\right)+\left(\dfrac{a+b+c}{c}\right)\) {nhân pp}
\(A=\left(\dfrac{a}{a}+\dfrac{b}{a}+\dfrac{c}{a}\right)+\left(\dfrac{a}{b}+\dfrac{b}{b}+\dfrac{c}{b}\right)+\left(\dfrac{a}{c}+\dfrac{b}{c}+\dfrac{c}{c}\right)\){tách nhỏ ra}

\(A=3+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{c}{a}+\dfrac{a}{c}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\) ghép lại theo định hướng

\(\left\{{}\begin{matrix}\dfrac{a}{b}=x\\\dfrac{b}{c}=y\\\dfrac{a}{c}=z\end{matrix}\right.\) \(\Rightarrow A=3+\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)+\left(z+\dfrac{1}{z}\right)\) {đổi biến viêt cho gọn }

\(A=3+2.3+\left(\sqrt{x}-2+\sqrt{\dfrac{1}{x}}\right)+\left(\sqrt{y}-2+\sqrt{\dfrac{1}{y}}\right)+\left(\sqrt{z}-2+\sqrt{\dfrac{1}{z}}\right)\)

{định hướng ghép bp}

\(A=9+\left(\sqrt{x}-\sqrt{\dfrac{1}{x}}\right)^2+\left(\sqrt{y}-\sqrt{\dfrac{1}{y}}\right)^2+\left(\sqrt{z}-\sqrt{\dfrac{1}{z}}\right)^2\)

\(\sum\left(x-\dfrac{1}{x}\right)^2\ge0\Rightarrow9+\sum\left(x-\dfrac{1}{x}\right)^2\ge9\Rightarrow A\ge9\)Kết thúc

18 tháng 4 2017

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}=9\)

6 tháng 1 2018

Áp dụng bất đẳng thức Cauchy-Schwarz:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{9}{1}=9\)

Dấu "=" xảy ra khi: \(a=b=c=\dfrac{1}{3}\)

6 tháng 1 2018

Áp dụng BĐT Svacxo ta được

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{\left(a+b+c\right)}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}=9\)

Vậy BĐT được chứng minh

17 tháng 7 2017

Áp dụng BĐT AM - GM, ta có:

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(=1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+1+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}+1\)

\(=3+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\)

\(\ge3+2+2+2=9\)

Dấu "=" xảy ra khi a = b = c

17 tháng 7 2017

Áp dụng bất đẳng thức \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\) có:

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{9\left(a+b+c\right)}{\left(a+b+c\right)}=9\)

Dấu " = " khi a = b = c

12 tháng 8 2017

BDT

\(x+\dfrac{1}{x}=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)^2+2\ge2\)

nhân PP vào là ra

\(\left(a+b+c\right).\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3+2+2+2=9\)

12 tháng 8 2017

Theo BĐT Cauchy:

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=9\)

Đẳng thức xảy ra \(\Leftrightarrow a=b=c\)

áp dụng BĐT:
1/a +1/b+1/c>= 9/a+b+c mà a+b+c=1

=>1/a+1/b+1/c≥9

30 tháng 3 2017

Cách 2:

Ta có:

\(A=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(=a\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)+b\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)+c\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(=1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+1+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}+1\)

\(=3+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{c}{a}+\dfrac{a}{c}\right)\)

Áp dụng BĐT AM-GM, ta có: \(\left\{{}\begin{matrix}\dfrac{a}{b}+\dfrac{b}{a}\ge2\\\dfrac{b}{c}+\dfrac{c}{b}\ge2\\\dfrac{c}{a}+\dfrac{a}{c}\ge2\end{matrix}\right.\)

=> \(A\ge9\)

P/s: Nhìn hơi dài nhưng trình bày ra thì không quá dài đâu! Ở đây mình làm hơi cẩn thận ::)))

30 tháng 3 2017

Áp dụng Bất đẳng thức Côsi:

\(\left(a+b+c\right)\ge3\sqrt[3]{abc}\)

\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{\dfrac{1}{a}.\dfrac{1}{b}.\dfrac{1}{c}}\)

\(\Rightarrow\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{a}.\dfrac{1}{b}.\dfrac{1}{c}}\)

\(\Rightarrow\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)

Vậy \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\left(đpcm\right)\)

P/s: Ủa, đề này lớp 8 à? Sao cô mình lại cho bọn mình làm cái này nhỉ? WTF?????

26 tháng 8 2017

Áp dụng bđt cosi cho 3 số thực không âm a,b,c ta có:

\(a+b+c\ge3\sqrt[3]{abc}\) (1)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\) (2)

Nhân (1) cho (2) vế theo vế được :

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)

hay \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\) (đpcm)

26 tháng 8 2017

Áp dụng BĐT Cauchy-Schwarz, ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{3^2}{1}=9\)

Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)

27 tháng 3 2018

aps dụng BĐTcauchy-schwarz dạng engel ta có

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{3^2}{a+b+c}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{1}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\)(đpcm)

27 tháng 3 2018

kuroba kaito trình bày ra hoặc cm bđt chứ lm j gọn z

20 tháng 3 2017

Bài 1:

Áp dụng BĐt cauchy dạng phân thức:

\(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\ge\dfrac{4}{3\left(x+y\right)}\)

\(\Rightarrow\left(3x+3y\right)\left(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\right)\ge\left(3x+3y\right).\dfrac{4}{3x+3y}=4\)

dấu = xảy ra khi 2x+y=x+2y <=> x=y

20 tháng 3 2017

Bài 2:

ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{4^2}{a+b+c+d}=\dfrac{16}{a+b+c+d}\)(theo BĐt cauchy-schwarz)

\(\Rightarrow\dfrac{1}{a+b+c+d}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)\)

Áp dụng BĐT trên vào bài toán ta có:

\(A=\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{c}\right)\)\(A\le\dfrac{1}{16}.4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

......

dấu = xảy ra khi a=b=c

Bài 2:

Áp dụng BĐT cauchy cho 2 số dương:

\(a^2+1\ge2a\)

\(\Leftrightarrow\dfrac{a}{a^2+1}\le\dfrac{a}{2a}=\dfrac{1}{2}\)

thiết lập tương tự:\(\dfrac{b}{b^2+1}\le\dfrac{1}{2};\dfrac{c}{c^2+1}\le\dfrac{1}{2}\)

cả 2 vế các BĐT đều dương ,cộng vế với vế,ta có dpcm

dấu = xảy ra khi a=b=c=1

Đầu tiên ta cm:\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)(tự cm)

Áp dụng:\(\Rightarrow\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ac}+\dfrac{1}{c^2+2ab}\ge\dfrac{9}{a^2+b^2+c^2+2ab+2bc+2ca}\)

Lại có:\(a^2+b^2+c^2+2ab+2bc+2ca=\left(a+b+c\right)^2\le1\)

\(\Rightarrow\dfrac{9}{a^2+b^2+c^2+2ab+2bc+2ca}\ge\dfrac{9}{1}=9\)

\(\Rightarrowđpcm\)