K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2017

Câu này giải như sau :

Ta có :

\(\sqrt{2a+bc}=\sqrt{\left(a+b+c\right)a+bc}=\sqrt{a^2+ab+ac+bc}=\sqrt{\left(a+c\right)\left(a+b\right)}\)

\(\Rightarrow\sqrt{2a+bc}\le\frac{a+b+a+c}{2}=\frac{2a+b+c}{2}\left(1\right)\)

tương tự ta có :\(\sqrt{2b+ac}\le\frac{2b+a+c}{2}\left(2\right)\)

\(\sqrt{2c+ac}\le\frac{2c+a+c}{2}\left(3\right)\)

cộng vế với vế 1,2,3 ta được

\(Q\le\frac{3\left(a+b+c\right)}{2}=\frac{3.2}{2}=3\)\(\Rightarrow Q_{max}=3\Leftrightarrow\)dấu "=" (a,b,c) là hoán vị của \(\left(0.1.1\right)\)

6 tháng 5 2018

@Hoàng Thanh Tuấn bạn giải sai rồi 

30 tháng 12 2021

\(\dfrac{ab}{\sqrt{ab+2c}}=\dfrac{ab}{\sqrt{ab+\left(a+b+c\right)c}}=\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}=ab\cdot\sqrt{\dfrac{1}{a+b}\cdot\dfrac{1}{b+c}}\le ab\cdot\dfrac{1}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)=\dfrac{1}{2}\left(\dfrac{ab}{a+b}+\dfrac{ab}{b+c}\right)\)

CMTT: \(\dfrac{bc}{\sqrt{bc+2a}}\le\dfrac{1}{2}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right);\dfrac{ac}{\sqrt{ac+2b}}\le\dfrac{1}{2}\left(\dfrac{ac}{b+c}+\dfrac{ac}{b+a}\right)\)

\(\Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{ab}{c+a}+\dfrac{ab}{c+b}+\dfrac{bc}{b+a}+\dfrac{bc}{c+a}+\dfrac{ac}{b+c}+\dfrac{ac}{b+c}\right)\\ \Leftrightarrow P\le\dfrac{1}{2}\left[\dfrac{b\left(a+c\right)}{a+c}+\dfrac{a\left(b+c\right)}{b+c}+\dfrac{c\left(a+b\right)}{a+b}\right]=\dfrac{1}{2}\left(a+b+c\right)=1\)

Dấu \("="\Leftrightarrow a=b=c=\dfrac{2}{3}\)

30 tháng 12 2021

Anh ơi! Anh giúp em thêm BĐT ạ! 

https://hoc24.vn/cau-hoi/cho-xyz-0-thoa-man-dfrac1xdfrac1ydfrac1z3-tim-gtln-cua-bieu-thuc-pdfrac1sqrt5x22xy2y2dfrac1sqrt5y22yz2z2dfrac1sqrt5z22xz2x2.4139241594094

NV
1 tháng 5 2021

\(a+b+c=\sqrt{6063}\Leftrightarrow\dfrac{a}{\sqrt{2021}}+\dfrac{b}{\sqrt{2021}}+\dfrac{c}{\sqrt{2021}}=\sqrt{3}\)

Đặt \(\left(\dfrac{a}{\sqrt{2021}};\dfrac{b}{\sqrt{2021}};\dfrac{c}{\sqrt{2021}}\right)=\left(x;y;z\right)\Rightarrow x+y+z=\sqrt{3}\)

\(P=\dfrac{2x}{\sqrt{2x^2+1}}+\dfrac{2y}{\sqrt{2y^2+1}}+\dfrac{2z}{\sqrt{2z^2+1}}\)

Ta có đánh giá:

\(\dfrac{x}{\sqrt{2x^2+1}}\le\dfrac{3\sqrt{15}x+2\sqrt{5}}{25}\)

Thật vậy, BĐT tương đương:

\(\left(\sqrt{3}x-1\right)^2\left(9x^2+10\sqrt{3}x+2\right)\ge0\) (luôn đúng)

Tương tự và cộng lại:

\(P\le\dfrac{6\sqrt{15}\left(x+y+z\right)+12\sqrt{5}}{25}=\dfrac{6\sqrt{5}}{5}\)

26 tháng 9 2021

Áp dụng BĐT Cauchy cho 2 số dương:

\(\sqrt{2a+b}=\sqrt{\left(2a+b\right).1}\le\dfrac{2a+b+1}{2}\)

CMTT: \(\sqrt{2b+c}\le\dfrac{2b+c+1}{2},\sqrt{2c+a}\le\dfrac{2c+a+1}{2}\)

\(\Rightarrow T=\sqrt{2a+b}+\sqrt{2b+c}+\sqrt{2c+a}\le\dfrac{2a+b+1+2b+c+1+2c+a+1}{2}=\dfrac{3\left(a+b+c\right)+3}{2}=\dfrac{3+3}{2}=\dfrac{6}{2}=3\)

\(maxT=3\Leftrightarrow2a+b=2b+c=2c+a=1=a+b+c\)

\(\Leftrightarrow a=b=c=\dfrac{1}{3}\)

 

25 tháng 10 2019

Chú ý: \(2a^2+ab+2b^2=\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{5}{4}\left(a+b\right)^2\) là ok liền:D

30 tháng 6 2020

Mấy bạn ơi , cho tớ hỏi:

Luật tính điểm hỏi đáp là gì?
Làm thế nào để câu trả lời của mình đứng đầu tiên trong các câu trả lời?

Ai trả lời nhanh mình tích cho.
 

NV
12 tháng 5 2021

\(\sqrt{2a^2+ab+2b^2}=\sqrt{\dfrac{3}{2}\left(a^2+b^2\right)+\dfrac{1}{2}\left(a+b\right)^2}\ge\sqrt{\dfrac{3}{4}\left(a+b\right)^2+\dfrac{1}{2}\left(a+b\right)^2}=\dfrac{\sqrt{5}}{2}\left(a+b\right)\)

Tương tự:

\(\sqrt{2b^2+bc+2c^2}\ge\dfrac{\sqrt{5}}{2}\left(b+c\right)\) ; \(\sqrt{2c^2+ca+2a^2}\ge\dfrac{\sqrt{5}}{2}\left(c+a\right)\)

Cộng vế với vế:

\(P\ge\sqrt{5}\left(a+b+c\right)\ge\dfrac{\sqrt{5}}{3}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^3=\dfrac{\sqrt{5}}{3}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{9}\)

NV
15 tháng 1 2021

\(\dfrac{\sqrt{b^2+a^2+a^2}}{ab}\ge\dfrac{\sqrt{\dfrac{1}{3}\left(b+a+a\right)^2}}{ab}=\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{a}+\dfrac{2}{b}\right)\)

Tương tự: \(\dfrac{\sqrt{c^2+2b^2}}{bc}\ge\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{b}+\dfrac{2}{c}\right)\) ; \(\dfrac{\sqrt{a^2+2c^2}}{ac}\ge\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{c}+\dfrac{2}{a}\right)\)

Cộng vế với vế:

\(VT\ge\dfrac{1}{\sqrt{3}}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)=\sqrt{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1980\sqrt{3}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{3}{1980}\)

12 tháng 1 2021

Đặt \(\left(\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c}\right)=\left(x,y,z\right)\) với x, y, z > 0 thì ta có \(x+y+z=1\).

Đặt biểu thức ở VT là A. Ta có: 

\(A=\sqrt{\dfrac{b^2+2a^2}{a^2b^2}}+\sqrt{\dfrac{c^2+2b^2}{b^2c^2}}+\sqrt{\dfrac{a^2+2c^2}{c^2a^2}}=\sqrt{x^2+2y^2}+\sqrt{y^2+2z^2}+\sqrt{z^2+2x^2}\).

Ta có bất đẳng thức \(\sqrt{a_1^2+a_2^2}+\sqrt{a_3^2+a_4^2}\ge\sqrt{\left(a_1+a_3\right)^2+\left(a_2+a_4\right)^2}\).

Đây là bđt Mincopxki cho hai bộ số thực và dễ dàng cm bằng biến đổi tương đương.

Do đó \(A\ge\sqrt{\left(x+y\right)^2+\left(\sqrt{2}y+\sqrt{2}z\right)^2}+\sqrt{z^2+2x^2}\ge\sqrt{\left(x+y+z\right)^2+\left(\sqrt{2}y+\sqrt{2}z+\sqrt{2}x\right)^2}=\sqrt{1+2}=\sqrt{3}=VP\).

Đẳng thức xảy ra khi a = b = c = 3.

Vậy...

 

NV
12 tháng 1 2021

Tương tự: \(GT\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)

\(VT=\dfrac{\sqrt{a^2+a^2+b^2}}{ab}+\dfrac{\sqrt{b^2+b^2+c^2}}{bc}+\dfrac{\sqrt{c^2+a^2+a^2}}{ca}\)

\(VT\ge\dfrac{\sqrt{\dfrac{1}{3}\left(a+a+b\right)^2}}{ab}+\dfrac{\sqrt{\dfrac{1}{3}\left(b+b+c\right)^2}}{bc}+\dfrac{\sqrt{\dfrac{1}{3}\left(c+c+a\right)^2}}{ca}\)

\(VT\ge\sqrt{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\sqrt{3}\)

Dấu "=" xảy ra khi \(a=b=c=3\)