Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\cdot\left(a+b\right)\)
\(\Leftrightarrow M=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+b^2\right)+6a^2b^2\)
\(\Leftrightarrow M=a^2-ab+b^2+3ab\left(a^2+2ab+b^2\right)\)
\(\Leftrightarrow M=a^2-ab+b^2+3ab\cdot\left(a+b\right)^2\)
\(\Leftrightarrow M=a^2-ab+3ab+b^2\)
\(\Leftrightarrow M=\left(a+b\right)^2=1^2=1\)
Vậy: Khi a+b=1 thì M=1
M=(a+b)^3-3ab(a+b)+3ab[(a+b)^2-2ab]+6a^2b^2
=1-3ab+3ab(1-2ab)+6a^2b^2
=1
Ta có: \(M=\frac{2010a}{ab+2010a+2010}+\frac{b}{bc+b+2010}+\frac{c}{ac+c+1}\)
Thế: abc = 2010 ta được:
\(M=\frac{a^2bc}{ab+a^2bc+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)
\(\Leftrightarrow\frac{a^2bc}{ab\left(1+ac+c\right)}+\frac{b}{b\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)
\(\Leftrightarrow\frac{a^2bc}{ab\left(1+ac+c\right)}+\frac{ab}{ab\left(c+1+ac\right)}+\frac{abc}{ab\left(ac+c+1\right)}\)
\(\Leftrightarrow\frac{a^2bc+ab+abc}{ab\left(1+ac+c\right)}=\frac{ab\left(ac+1+c\right)}{ab\left(1+ac+c\right)}=1\)
Vậy \(M=1\)
\(a+b=6\)
<=> \(\left(a+b\right)^2=36\)
<=> \(a^2+2ab+b^2=36\)
<=> \(2ab=36-a^2-b^2=-1974\)
<=> \(ab=--987\)
\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=6^3-3.\left(-987\right).6=17982\)
\(a^3+b^3=\left(a+b\right)\left(a^2+2ab+b^2\right)\)
\(=6\left(2010+2ab\right)\)
\(12060+6\left[\left(a+b\right)^2-a^2-b^2\right]\)
\(12060+6\left(36-2010\right)\)
\(=12060-11844\)
\(=216\)