K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2020

Ta có: \(\left(a+\frac{1}{a}\right)\left(b+\frac{1}{b}\right)\left(c+\frac{1}{c}\right)\)

\(=\left(ab+\frac{1}{ab}+\frac{a}{b}+\frac{b}{a}\right)\left(c+\frac{1}{c}\right)\)

\(=\left[ab+\frac{1}{16ab}+\frac{15}{16ab}+\left(\frac{a}{b}+\frac{b}{a}\right)\right]\left(c+\frac{1}{c}\right)\)

\(\ge\left[2\sqrt{ab.\frac{1}{16ab}}+\frac{15}{4\left(a+b\right)^2}+2\sqrt{\frac{a}{b}.\frac{b}{a}}\right]\left(2\sqrt{c.\frac{1}{c}}\right)\)

\(\ge\frac{25}{2}\left(Đpcm\right)\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=\frac{1}{2};c=1\)

31 tháng 1 2020

nó chưa cho c dương kìa.

22 tháng 4 2019

Chứng minh bất đẳng thức \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

Có: \(\left[\left(\frac{a}{\sqrt{x}}\right)^2+\left(\frac{b}{\sqrt{y}}\right)^2+\left(\frac{c}{\sqrt{z}}\right)^2\right]\left(\sqrt{x}^2+\sqrt{y}^2+\sqrt{z}^2\right)\ge\left(a+b+c\right)^2\) (Bunyakovsky)

\(\Leftrightarrow\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

abc = 1 => a^2.b^2.c^2 = 1

\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}=\frac{a^2b^2c^2}{a^3\left(b+c\right)}+\frac{a^2b^2c^2}{b^3\left(c+a\right)}+\frac{a^2b^2c^2}{c^3\left(a+b\right)}\)
\(=\frac{\left(bc\right)^2}{ab+ac}+\frac{\left(ac\right)^2}{bc+ba}+\frac{\left(ab\right)^2}{ca+cb}\ge\frac{\left(ab+ac+bc\right)^2}{2\left(ab+ac+bc\right)}=\frac{\left(ab+ac+bc\right)}{2}\)
\(\ge\frac{3\sqrt[3]{ab.ac.bc}}{2}\)(Cauchy) \(=\frac{3\sqrt[3]{\left(abc\right)^2}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}a=b=c\\\frac{bc}{ab+ac}=\frac{ac}{bc+ba}+\frac{ab}{ca+cb}\Leftrightarrow\end{cases}a=b=c}\)

Mà abc=1 <=> a^3 = 1 <=> a=1 => b=c=a=1

https://diendantoanhoc.net/topic/80159-ch%E1%BB%A9ng-minh-frac1a2b3cfrac12a3bcfrac13bb2c-leqslant-frac316/

bạn tham khảo ở đây nhé

4 tháng 5 2018

a + b5 + c

= ( a+b+c )

= 0 chia het cho 30

4 tháng 5 2018

Ta có :\(\left(a-\frac{1}{b}\right)\left(b-\frac{1}{c}\right)\left(c-\frac{1}{a}\right)\)

\(=\frac{ab-1}{b}.\frac{bc-1}{c}.\frac{ac-1}{a}\)

Ta lại có : \(\left(a-\frac{1}{a}\right)\left(b-\frac{1}{b}\right)\left(c-\frac{1}{c}\right)\)

\(=\frac{a^2-1}{a}.\frac{b^2-1}{b}.\frac{c^2-1}{c}\)

29 tháng 1 2019

Mẫu bài này khó khử ~v

Ta có: \(\frac{1}{a^3\left(b+c\right)}+\frac{a^3\left(b+c\right)}{4}\ge2\sqrt{\frac{1}{a^3\left(b+c\right)}.\frac{a^3\left(b+c\right)}{4}}=2.\frac{1}{2}=1\)

Thiết lập hai BĐT còn lại tương tự và cộng theo vế,ta có:

\(VT+\frac{\left[a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)\right]}{4}\ge3\) (*)

Ta sẽ c/m: \(a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)\ge6\) (**)

Thật vậy,áp dụng BĐT Cô si,ta có: \(VT_{\left(^∗^∗\right)}\ge2a^2.a\sqrt{bc}+2b^2.b\sqrt{ac}+2c^2.c\sqrt{ab}\) 

\(=2a^2\sqrt{abc.a}+2b^2\sqrt{abc.b}+2c^2\sqrt{abc.c}\)

\(=2a^2\sqrt{a}+2b^2\sqrt{b}+2b^2\sqrt{c}\) (***)

Đặt \(\sqrt{a}=t;\sqrt{b}=u;\sqrt{c}=v\).và \(t.u.v=1\)

(***) trở thành: \(2t^5+2u^5+2v^5=2\left(t^5+u^5+v^5\right)\)

Ta có: \(t^5+u^5+v^5+1+1\ge5\sqrt[5]{t^5u^5v^5.1.1}=5\)

Suy ra \(t^5+u^5+v^5\ge5-2=3\)

Suy ra \(2\left(t^5+u^5+v^5\right)\ge2.3=6\) (****)

Kết hợp (**) ; (***) và (****) suy ra \(a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)\ge6\)

Thay vào (1) suy ra \(VT+\frac{\left[a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)\right]}{4}\ge VT+\frac{6}{4}\ge3\)

Suy ra \(VT\ge\frac{3}{2}^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi a = b = c = 1

Bài dài quá,có gì sai sót mong bạn thông cảm.Vì khi bài dài,mình làm có thể sẽ bị ngược dấu. :v

26 tháng 5 2019

Chết mọe,hình như em làm sai rồi thì phải :(,Sr ạ!

AH
Akai Haruma
Giáo viên
29 tháng 1 2020

Lời giải:

Ta có:

\((a+\frac{1}{a})(b+\frac{1}{b})=ab+\frac{a}{b}+\frac{b}{a}+\frac{1}{ab}\)

Áp dụng BĐT AM-GM:

\(\frac{a}{b}+\frac{b}{a}\geq 2\)

\(ab+\frac{1}{16ab}\geq \frac{1}{2}\)

\(\frac{15}{16ab}\geq \frac{15}{4(a+b)^2}=\frac{15}{4}\)

Cộng theo vế các BĐT trên:

\((a+\frac{1}{a})(b+\frac{1}{b})\geq \frac{25}{4}\) (đpcm)

Dấu "=" xảy ra khi $a=b=\frac{1}{2}$

AH
Akai Haruma
Giáo viên
7 tháng 1 2020

\left\{\begin{matrix}
\\
\end{matrix}\right.

16 tháng 10 2020

Xí trước phần b

Ta có: \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\)

\(=\frac{abc}{a^3\left(b+c\right)}+\frac{abc}{b^3\left(c+a\right)}+\frac{abc}{c^3\left(a+b\right)}\)

\(=\frac{bc}{a^2b+ca^2}+\frac{ca}{b^2c+ab^2}+\frac{ab}{c^2a+bc^2}\)

\(=\frac{b^2c^2}{a^2b^2c+a^2bc^2}+\frac{c^2a^2}{ab^2c^2+a^2b^2c}+\frac{a^2b^2}{a^2bc^2+ab^2c^2}\)

\(=\frac{\left(bc\right)^2}{ab+ca}+\frac{\left(ca\right)^2}{bc+ab}+\frac{\left(ab\right)^2}{ca+bc}\)

\(\ge\frac{\left(bc+ca+ab\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\ge\frac{3\sqrt[3]{\left(abc\right)^2}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi: \(a=b=c=1\)

16 tháng 10 2020

Cách làm khác của phần b ngắn gọn hơn:)

Ta có; \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\)

\(=\frac{\frac{1}{a^2}}{a\left(b+c\right)}+\frac{\frac{1}{b^2}}{b\left(c+a\right)}+\frac{\frac{1}{c^2}}{c\left(a+b\right)}\)

\(=\frac{\left(\frac{1}{a}\right)^2}{ab+ca}+\frac{\left(\frac{1}{b}\right)^2}{bc+ab}+\frac{\left(\frac{1}{c}\right)^2}{ca+bc}\)

\(\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(\frac{ab+bc+ca}{abc}\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\ge\frac{3\sqrt[3]{\left(abc\right)^2}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi: a = b = c = 1

28 tháng 10 2019

Ta có :

\(\left(a-\frac{1}{b}\right)\left(b-\frac{1}{c}\right)\left(c-\frac{1}{a}\right)\ge\left(a-\frac{1}{a}\right)\left(b-\frac{1}{b}\right)\left(c-\frac{1}{c}\right)\)

\(\Leftrightarrow\frac{\left(ab-1\right)\left(bc-1\right)\left(ac-1\right)}{abc}\ge\frac{\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)}{abc}\)

\(\Leftrightarrow\left(ab-1\right)\left(bc-1\right)\left(ac-1\right)\ge\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\)

\(\Leftrightarrow\left(ab-bc\right)^2+\left(bc-ac\right)^2+\left(ac-ab\right)^2\ge\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)

\(\Leftrightarrow\left(a-c\right)^2\left(b^2-1\right)+\left(b-c\right)^2\left(a^2-1\right)+\left(a-b\right)^2\left(c^2-1\right)\ge0\left(1\right)\)

Do a,b,c là các số thực dương không nhỏ hơn 1 nên (1) đúng .

Dấu đẳng thức xảy ra khi và khỉ khi : \(\hept{\begin{cases}\left(a-c\right)^2\left(b^2-1\right)=0\\\left(b-c\right)^2\left(a^2-1\right)=0\\\left(a-b\right)^2\left(c^2-1\right)=0\end{cases}\Rightarrow a=b=c}\)

28 tháng 10 2019

Dấu "=" còn xảy ra ở các TH: 

a = b = 1, c bất kì .

a = c =1, b bất kì

b = c = 1,  a bất kì

( a, b, c ko nhỏ hơn 1 )

28 tháng 7 2020

Đặt ⎧⎪⎨⎪⎩a+b−c=xb+c−a=yc+a−b=z(x,y,z>0){a+b−c=xb+c−a=yc+a−b=z(x,y,z>0)

⇒⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩a=z+x2b=x+y2c=y+z2⇒{a=z+x2b=x+y2c=y+z2

⇒√a(1b+c−a−1√bc)=√2(z+x)2(1y−2√(x+y)(y+z))≥√x+√z2(1y−2√xy+√yz)=√x+√z2y−1√y⇒a(1b+c−a−1bc)=2(z+x)2(1y−2(x+y)(y+z))≥x+z2(1y−2xy+yz)=x+z2y−1y
Tương tự

⇒∑√a(1b+c−a−1√bc)≥∑√x+√z2y−∑1√y⇒∑a(1b+c−a−1bc)≥∑x+z2y−∑1y

⇒VT≥∑[x√x(y+z)]2xyz−∑√xy√xyz≥2√xyz(x+y+z)2xyz−x+y+z√xyz≐x+y+z√xyz−x+y+z√xyz=0⇒VT≥∑[xx(y+z)]2xyz−∑xyxyz≥2xyz(x+y+z)2xyz−x+y+zxyz≐x+y+zxyz−x+y+zxyz=0

(∑√xy≤x+y+z,x√x(y+z)≥2x√xyz)(∑xy≤x+y+z,xx(y+z)≥2xxyz)

dấu = ⇔x=y=z⇔a=b=c

Mai Anh ! cậu giỏi quá, cậu nè :33