K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2016

+ Nếu a = b thì a + b = a + a = 2a < a.b ( vì b > 2)

+ Nếu a < b thì a + b < b + b = 2b < a.b ( vì a > 2)

+ Nếu a > b thì a + b < a + a = 2a < a.b ( vì b > 2)

=> đpcm

16 tháng 11 2016

Mấy bạn làm hộ mình nha , bài khó quá không biết làm thế nào nữa.Xin trân thành cảm ơn nếu các bạn làm chi tiết.

22 tháng 10 2014

vì a thuộc N* nên a+b =d (d khác 0) mà a+b khác 0 nên tích a.b khác 0 suy ra a+b <a.b

do tính chất của a;b tương đương nhau nên ta giả sử a<(=)b

=>a+b<(=)b+b=2b

2<a=>2b<ab

=>a+b<ab

=>đpcm

11 tháng 6 2015

trog câu hỏi tương tự và cậu cũng là người hỏi câu hỏi này, phải nhớ chứ

a+b=1997 =>a hoặc b là số chẵn

=>ab là số chẵn(1) mà ab=9711(2)

=>(1) và (2) mâu thuẫn với nhau

=>không có a;b

vậy không có a và b 

 

AH
Akai Haruma
Giáo viên
22 tháng 2 2023

Lời giải:

Đề thiếu điều kiện $a< b$ nữa bạn nhé.

Xét hiệu \(\frac{a}{b}-\frac{a+c}{b+c}=\frac{a(b+c)-b(a+c)}{b(b+c)}=\frac{c(a-b)}{b(b+c)}<0\) do $a,b,c$ là số tự nhiên khác 0, $a-b<0$ với $a<b$

$\Rightarrow \frac{a}{b}< \frac{a+c}{b+c}$

AH
Akai Haruma
Giáo viên
31 tháng 10

Lời giải:
$a=1+2+...+n=\frac{n(n+1)}{2}$

$b=2n+1$

Giả sử $a,b$ không nguyên tố cùng nhau. Gọi $p$ là ước nguyên tố lớn nhất của $a,b$.

$\Rightarrow a=\frac{n(n+1)}{2}\vdots p; b=2n+1\vdots p$

Có:

$\frac{n(n+1)}{2}\vdots p\Rightarrow n\vdots p$ hoặc $n+1\vdots p$

Nếu $n\vdots p$. Kết hợp với $2n+1\vdots p\Rightarrow 1\vdots p\Rightarrow p=1$ (vô lý) 

Nếu $n+1\vdots p$. Kết hợp với $2n+1\vdots p\Rightarrow 2(n+1)-(2n+1)\vdots p$

$\Rightarrow 1\vdots p\Rightarrow p=1$ (vô lý)

Vậy điều giả sử là sai. Tức là $a,b$ là hai số nguyên tố cùng nhau.