K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2015

bài này hình như đăng nhiều lắm, nhìn quen quen

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Lời giải:

Giả sử $(a^2+b^2, ab)>1$. Khi đó, gọi $p$ là ước nguyên tố lớn nhất của $(a^2+b^2,ab)$

$\Rightarrow a^2+b^2\vdots p; ab\vdots p$

Vì $ab\vdots p\Rightarrow a\vdots p$ hoặc $b\vdots p$

Nếu $a\vdots p$. Kết hợp $a^2+b^2\vdots p\Rightarrow b^2\vdots p$

$\Rightarrow b\vdots p$

$\Rightarrow p=ƯC(a,b)$ . Mà $(a,b)=1$ nên vô lý 

Tương tự nếu $b\vdots p$
Vậy điều giả sử là sai. Tức là $(a^2+b^2, ab)=1$

11 tháng 3 2021

Số chính phương khi chia 3 chỉ dư 0 hoặc 1.

Trường hợp 1: 

\(a^2\equiv1\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv1\left(mod3\right)\)(loại)

Trường hợp 2: 

\(a^2\equiv1\left(mod\right)3;b^2\equiv1\left(mod3\right)\Leftrightarrow a^2+b^2\equiv2\left(mod3\right)\)(loại)

Trường hợp 3: 

\(a^2\equiv0\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv0\left(mod3\right)\) ( thỏa mãn )

Vậy có đpcm.

 

 

Giải:

Giả sử a không ⋮ 3 ➩ b không ⋮ 3

\(a^2 - 1 + b^2-1\) ⋮ 3

Mà \(a^2 +b^2\)2⋮ 3 (không có thể)

Vậy a và b ⋮ 3.

 

 

31 tháng 3 2023

Xét tổng

  Nếu cả 7 số đều lẻ thì tổng của chúng là số lẻ và do đó khác 0

Suy ra có ít nhất một trong 7 số  là số chẵn

  là số chẵn

5 tháng 10 2019

17 tháng 2 2021

a, a(b+c)−b(a−c)a(b+c)−b(a−c)

=ab+ac−(ab−bc)=ab+ac−(ab−bc)

=ab+ac−ab+bc=ab+ac−ab+bc

=ac+bc=ac+bc

=(a+b)c=(a+b)c

b,(a+b)(a−b)(a+b)(a−b)

=(aa+ab)−(ab+bb)=(aa+ab)−(ab+bb)

=aa+ab−ab−bb

24 tháng 7 2018

Với a = -7 và b = 4. Ta có:

a2 – b2 = (-7)2 – 42 = 49 – 16 = 33

(a + b).(a –b) = [(-7) + 4].[(-7) - 4 ] = (-3).(-11) = 33

a^3+b^3+c^3-3abc

=(a+b)^3+c^3-3ab(a+b)-3bca

=(a+b+c)(a^2+2ab+b^2-ac-bc+c^2)-3ab(a+b+c)

=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)