Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kiến thức: một số chính phương là một số chia hết cho 4 hoặc chia 4 dư 1
Bài giải
a) A = 3 + 32 + 33 + 34 +...+ 319 + 320
A = (3 + 32) + (33 + 34) +...+ (319 + 320)
A = (3.1 + 3.3) + (33.1 + 33.3) +...+ (319.1 + 319.3)
A = [3.(1 + 3)] + [33.(1 + 3)] +...+ [319.(1 + 3)]
A = 3.4 + 33.4 +...+ 319.4
A = (3 + 33 +...+ 319).4 chia hết cho 4
Vì A chia hết cho 4
Suy ra A là một số chính phương
b) B = 11 + 112 + 113
B = 11 + (112 + 113)
B = 11 + (112.1 + 112.11)
B = 11 + [112.(1 + 11)]
B = 11 + 112.12
Vì 112.12 chia hết cho 4
và 11 chia 4 dư 3
Nên B không phải là một số chính phương
Vậy B không phải là một số chính phương
a) A = 3 + 32 + 33 + ... + 320
Các lũy thừa của 3 từ 32 trở đi đều chia hết cho 9
=> 32; 33; ...; 320 chia hết cho 9
=> 32 + 33 + ... + 320 chia hết cho 9
Mà 3 chia hết cho 3 nhưng không chia hết cho 9
=> A chia hết cho 3 nhưng không chia hết cho 9, không là số chính phương
Câu b tương tự
a. ta có A chia hết cho 5 và A >5 thế nên A là hợp số
b. dễ thấy A không chia hết cho 5 vì :
\(A=5+25\left(1+5+5^2+..+5^{98}\right)\)
A chia hết cho 5 mà không chia hết cho 25, nên A không là số chính phương
1)
a)
b)
2)
Vậy A không phải là số chính phương
Học tốt nha
Ta có: \(1^2+3^2+5^2+...+2021^2\) tổng trên có \(\left(2021-1\right)\div2+1=1011\)số hạng
do đó \(1^2+3^2+5^2+...+2021^2\)là số lẻ nên \(a+b+c=1^2+2^2+3^2+...+2021^2\)là số lẻ.
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\)
\(\left(a+b+c\right)^2\)là số lẻ, \(2\left(ab+bc+ca\right)\)là số chẵn
nên \(a^2+b^2+c^2\)là số lẻ.