K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2016

Để tính GTNN của P=a+b+c thì ta cực tiểu hóa a,b và c (*)

Không giảm tính tổng quát,giả sử \(1\le a\le b\le c\) \(\Rightarrow\frac{1}{a}\ge\frac{1}{b}\ge\frac{1}{c}\)

Ta có :\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\frac{3}{a}\Rightarrow\frac{28}{29}<\frac{3}{a}\)=>1<a<3 và 3/28 =>a E {2;3} do a E N

\(\)

+)a=2=>b>2 từ (*) chọn b=3 và c=7 vì 1/2+1/3+1/7=41/42 mà 28/29<41/42<1

+)a=3=>c >= b >= 3,nếu a=b=c=3 thì 1/a+1/b+1/c=1

Nếu a=3;b ,c >= 4 thì 1/a+1/b+1/c <= 1/3+1/4+1/4=5/6<28/29(loại a=3)

Vậy (a+b+c)min=2+3+7=12

23 tháng 2 2016

nhè mọi người giải giúp tôi nhanh lên!