K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 5 2018

Lời giải:

Gọi $d$ là ước chung lớn nhất của $a,b$

Khi đó, đặt \(\left\{\begin{matrix} a=dx\\ b=dy\end{matrix}\right.(x,y)=1\)

Ta có: \(ab(a+b)\vdots a^2+ab+b^2\)

\(\Leftrightarrow dxdy(dx+dy)\vdots (dx)^2+dxdy+(dy)^2\)

\(\Leftrightarrow dxy(x+y)\vdots x^2+xy+y^2\)

Do $x,y$ nguyên tố cùng nhau nên :

\((x,x^2+xy+y^2)= (y,x^2+xy+y^2)=(x+y,x^2+xy+y^2)=1\)

Suy ra \(d\vdots x^2+xy+y^2\)

\(\Rightarrow d\geq x^2+xy+y^2\)

\(\Rightarrow d^3\geq a^2+ab+b^2\)

Mà với $a,b$ nguyên dương phân biệt thì \(a^2+ab+b^2\geq 3ab>ab\)

Do đó \(d^3>ab(1)\)

Mặt khác: $a,b$ nguyên dương phân biệt kéo theo $x,y$ nguyên dương phân biệt nên \(|x-y|\geq 1\)

\(\Rightarrow |a-b|=d|x-y|\geq d(2)\)

Từ \((1);(2)\Rightarrow |a-b|^3>ab\Rightarrow |a-b|>\sqrt[3]{ab}\)

Ta có đpcm.

11 tháng 5 2022

BN THAM KHẢO:

undefined

 

23 tháng 1 2019

1) Áp dụng BĐT bun-hi-a-cốp-xki ta có:

\(\left(a+d\right)\left(b+c\right)\ge\left(\sqrt{ab}+\sqrt{cd}\right)^2\)

\(\Leftrightarrow\sqrt{\left(a+d\right)\left(b+c\right)}\ge\sqrt{ab}+\sqrt{cd}\)( vì a,b,c,d dương )

Dấu " = " xảy ra \(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)

22 tháng 6 2018

Ta chứng minh BĐT

( a + b + c ) ( 1 a + 1 b + 1 c ) ≥ 9 ( * ) ( * ) < = > 3 + ( a b + b a ) + ( b c + c b ) + ( c a + a c ) ≥ 9

Áp dụng BĐT Cô – si cho hai số dương ta có:

a b + b a ≥ 2 b c + c b ≥ 2 c a + a c ≥ 2 =>(*) đúng

 

= > 9 a + b + c ≤ 1 a + 1 b + 1 c ≤ 3 = > a + b + c ≥ 3

Trở lại bài toán: Áp dụng BĐT Cô si cho hai số dương ta có  1 + b 2 ≥ 2 b

Ta có: a 1 + b 2 = a − a b 2 1 + b 2 ≥ a − a b 2 2 b = a − a b 2 ( 1 )

 

Tương tự ta có: 

b 1 + c 2 ≥ b − b c 2 ( 2 ) c 1 + a 2 ≥ c − c a 2 ( 3 )

 

Cộng từng vế của (1), (2) và (3) ta có:

a 1 + b 2 + b 1 + c 2 + c 1 + a 2 ≥ a + b + c − 1 2 ( a b + b c + c a ) = > a 1 + b 2 + b 1 + c 2 + c 1 + a 2 + 1 2 ( a b + b c + c a ) ≥ a + b + c ≥ 3