Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Keke
\(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}\ge\frac{3}{a+b}+\frac{18}{3b+4c}+\frac{9}{c+6a}\) \(\left(i\right)\)
Đặt \(x=\frac{1}{a};\) \(y=\frac{2}{b};\) và \(z=\frac{3}{c}\) \(\Rightarrow\) \(\hept{\begin{cases}a=\frac{1}{x}\\b=\frac{2}{b}\\c=\frac{3}{z}\end{cases}}\) nên \(x,y,z>0\)
Khi đó, ta có thể biểu diễn lại bđt \(\left(i\right)\) dưới dạng ba biến \(x,y,z\) như sau:
\(x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3xz}{2z+x}\) \(\left(ii\right)\)
Lúc này, ta cần phải chứng minh bđt \(\left(ii\right)\) luôn đúng với mọi \(x,y,z>0\)
Thật vậy, ta có:
\(2x+y=x+x+y\ge3\sqrt[3]{x^2y}\)
\(\Rightarrow\) \(\frac{3xy}{2x+y}\le\frac{3xy}{3\left(x^2y\right)^{\frac{1}{3}}}=\left(xy^2\right)^{\frac{1}{3}}\le\frac{x+2y}{3}\) \(\left(1\right)\)
Thiết lập các bđt còn lại theo vòng hoán vị \(y\rightarrow z\rightarrow x\) , ta có:
\(\frac{3yz}{2y+z}\le\frac{y+2z}{3}\) \(\left(2\right);\) \(\frac{3xz}{2z+x}\le\frac{z+2x}{3}\) \(\left(3\right)\)
Cộng từng vế ba bđt \(\left(1\right);\) \(\left(2\right);\) và \(\left(3\right)\) ta được:
\(VP\left(ii\right)\le\frac{x+2y+y+2z+z+2x}{3}=\frac{3\left(x+y+z\right)}{3}=x+y+z=VT\left(ii\right)\)
Vậy, bđt \(\left(ii\right)\) được chứng minh.
nên kéo theo bđt \(\left(i\right)\) luôn là bđt đúng với mọi \(a,b,c>0\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(x=y=z\) \(\Leftrightarrow\) \(6a=3b=2c\)
\(a^3+b^3+abc\ge ab\left(a+b+c\right)\\ \Leftrightarrow a^3+b^3+abc-ab\left(a+b+c\right)\ge0\\ \Leftrightarrow a^3+b^3+ab\left(c-a-b-c\right)\ge0\\ \Leftrightarrow a^3+b^3-ab\left(a+b\right)\ge0\\ \Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\\ \Leftrightarrow\left(a+b\right)\left(a^2-2ab+b^2\right)\ge0\\ \Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\left(luôn.đúng\right)\)
\(ab+1\le b\Rightarrow a+\dfrac{1}{b}\le1\)
Đặt \(\left(a;\dfrac{1}{b}\right)=\left(x;y\right)\Rightarrow x+y\le1\)
Gọi vế trái của BĐT cần chứng minh là P:
\(P=x+\dfrac{1}{x^2}+y+\dfrac{1}{y^2}=\left(\dfrac{1}{x^2}+8x+8x\right)+\left(\dfrac{1}{y^2}+8y+8y\right)-15\left(x+y\right)\)
\(P\ge3\sqrt[3]{\dfrac{64x^2}{x^2}}+3\sqrt[3]{\dfrac{64y^2}{y^2}}-15.1=9\) (đpcm)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{1}{2};\dfrac{1}{2}\right)\) hay \(\left(a;b\right)=\left(\dfrac{1}{2};2\right)\)
xí câu 1:))
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)
Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )
Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )
Vậy ta có đpcm
Đẳng thức xảy ra <=> a=2 => x=y=2
Đặt vế trái của BĐT là P:
\(P=\sqrt{\left(a+2\right)\left(b+2\right)}+\sqrt{2b.\left(a+1\right)}\)
\(P\le\dfrac{1}{2}\left(a+2+b+2\right)+\dfrac{1}{2}\left(2b+a+1\right)\)
\(P\le\dfrac{1}{2}\left(2a+3b+5\right)=\dfrac{1}{2}.2024=1012\)
Dấu "=" không xảy ra