K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2022

Từ giả thiết => a≡1(mod3), a=3k+1 (k∈ℕ); b≡2(mod3), b=3q+2 (q∈ℕ)

=> A=4a+9b+a+b=1=1+0+1+2(mod3)hay A≡4(mod3)(1)

Lại có 4a=43k+1=4⋅64k≡4(mod7)

9b=93q+2≡23q+2(mod7)⇒9b≡4⋅8q≡4(mod7)

Từ gt => a≡1(mod7),b≡1(mod7)

Dẫn đến A=4a+9b+a+b≡4+4+1+1(mod7)hay A≡10(mod7)

Từ (1) => A≡10(mod3)mà 3,7 nguyên tố cùng nhau nên A≡10(mod21)

=> A chia 21 dư 10

17 tháng 4 2022

Từ giả thiết => a≡1(mod3), a=3k+1 (k∈ℕ); b≡2(mod3), b=3q+2 (q∈ℕ)

=> A=4a+9b+a+b=1=1+0+1+2(mod3)hay A≡4(mod3)(1)

Lại có 4a=43k+1=4⋅64k≡4(mod7)

9b=93q+2≡23q+2(mod7)⇒9b≡4⋅8q≡4(mod7)

Từ gt => a≡1(mod7),b≡1(mod7)

Dẫn đến A=4a+9b+a+b≡4+4+1+1(mod7)hay A≡10(mod7)

Từ (1) => A≡10(mod3)mà 3,7 nguyên tố cùng nhau nên A≡10(mod21)

=> A chia 21 dư 10

17 tháng 4 2022

Từ giả thiết => a≡1(mod3), a=3k+1 (k∈ℕ); b≡2(mod3), b=3q+2 (q∈ℕ)

=> A=4a+9b+a+b=1=1+0+1+2(mod3)hay A≡4(mod3)(1)

Lại có 4a=43k+1=4⋅64k≡4(mod7)

9b=93q+2≡23q+2(mod7)⇒9b≡4⋅8q≡4(mod7)

Từ gt => a≡1(mod7),b≡1(mod7)

Dẫn đến A=4a+9b+a+b≡4+4+1+1(mod7)hay A≡10(mod7)

Từ (1) => A≡10(mod3)mà 3,7 nguyên tố cùng nhau nên A≡10(mod21)

=> A chia 21 dư 10

13 tháng 5 2020

Giúp mình với nha ,thanks nhiều

14 tháng 5 2020

Từ giả thiết => \(a\equiv1\left(mod3\right)\), a=3k+1 (\(k\inℕ\)); b\(\equiv2\left(mod3\right)\), b=3q+2 \(\left(q\inℕ\right)\)

=> \(A=4^a+9^b+a+b=1=1+0+1+2\left(mod3\right)\)hay \(A\equiv4\left(mod3\right)\)(1)

Lại có \(4^a=4^{3k+1}=4\cdot64^k\equiv4\left(mod7\right)\)

\(9^b=9^{3q+2}\equiv2^{3q+2}\left(mod7\right)\Rightarrow9^b\equiv4\cdot8^q\equiv4\left(mod7\right)\)

Từ gt => \(a\equiv1\left(mod7\right),b\equiv1\left(mod7\right)\)

Dẫn đến \(A=4^a+9^b+a+b\equiv4+4+1+1\left(mod7\right)\)hay \(A\equiv10\left(mod7\right)\)

Từ (1) => \(A\equiv10\left(mod3\right)\)mà 3,7 nguyên tố cùng nhau nên \(A\equiv10\left(mod21\right)\)

=> A chia 21 dư 10

21 tháng 10 2019

3. Câu hỏi của Hoàng Đức Thịnh - Toán lớp 8 - Học toán với OnlineMath

10 tháng 7 2018

ai làm dược bài 1 mình tích cho

2 tháng 9 2018

Bài 1 : a . Sử dụng công thúc sau : a^n - b^n = ( a-b ) ( a^n-1 + a^n-2 . b + .....+ b^n-1 )

=> A = 21^5 - 1 chia hết cho 20 

=> A = 21^10 - 1 chia hết 400

=> A= 21^10 - 1 chia hết cho 200