K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2015

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}=\frac{a+b}{c+d}\)

19 tháng 7 2015

Cách 1:

Đặt : \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

suy ra: \(\frac{a}{c}=\frac{bk}{dk}=\frac{b}{d}\)

\(\frac{a+b}{c+d}=\frac{bk+b}{dk+d}=\frac{b.\left(k+1\right)}{d.\left(k+1\right)}=\frac{b}{d}\)

=> ĐPCM

Cách 2:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)

=>ĐPCM

Cách 3: 

\(\frac{a}{c}=\frac{a+b}{c+d}\Rightarrow a.\left(c+d\right)=c.\left(a+b\right)\)

a.c+a.d=a.c+c.b

a.d=c.b

=>\(\frac{a}{b}=\frac{c}{d}\)(là giả thiết)

=>ĐPCM

19 tháng 7 2015

Bạn hỏi câu này 6 lần rồi.

19 tháng 7 2015

Đặt \(\frac{a}{b}=\frac{c}{d}=t=>a=bt;c=dt\)

Thay vào VT ta có:

        \(\frac{a}{c}=\frac{bt}{dt}=\frac{b}{d}\) (1)

Thay vào VP ta có :

              \(\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b\left(t+1\right)}{d\left(t+1\right)}=\frac{b}{d}\) (2)

Từ (1) và (2) => VT  = VP => ĐPCM

                      

20 tháng 10 2015

\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc=ad-bd=bc-bd=d.\left(a-b\right)=b.\left(c-d\right)\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\)Đúng 100% tick nha

 

19 tháng 8 2020

A B C D

Xét tam giác ABC có ^B = ^C => Tam giác ABC cân tại A

=> AB = AC

Xét tam giác ADB và tam giác ADC có :

^DAB = ^DAC ( AD là phân giác của ^A )

AB = AC ( tam giác ABC cân )

^B = ^C ( gt )

=> Tam giác ADB = tam giác ADC ( g.c.g )

Xong :)

19 tháng 8 2020

làm xíu hình cũng được vậy 

A B C D

Ta có góc B = góc C suy ra tam giác ABC cân tại A 

Do tam giác ABC là tam giác cân và AD là đường phân giác 

=> AD đồng thời là đường cao 

Xét hai tam giác vuông ADB và ADC ta có 

góc B = góc C ( giả thiết )

AD cạnh chung 

=> tam giác ADB = tam giác ADC ( cạnh huyền - góc nhọn )

=> góc ADB = góc ADC ( các góc tương ứng của hai tam giác bằng nhau )

Ta đã chứng minh được tam giác ADB = tam giác ADC

=> AB = AC ( các cạnh tương ứng của hai tam giác bằng nhau )

13 tháng 8 2019

a) A = \(9\frac{3}{8}-\left(2\frac{3}{5}+2\frac{3}{8}\right)=9\frac{3}{8}-2\frac{3}{5}-2\frac{3}{8}=\left(9\frac{3}{8}-2\frac{3}{8}\right)-2\frac{3}{5}=7-\frac{13}{5}=\frac{22}{5}\)

b) B = \(\left(15\frac{3}{5}+5\frac{3}{4}\right)-8\frac{3}{5}=15\frac{3}{5}+5\frac{3}{4}-8\frac{3}{5}=\left(15\frac{3}{5}-8\frac{3}{5}\right)+5\frac{3}{4}=7+\frac{23}{4}=\frac{51}{4}\)

c) C = \(17\frac{1}{4}-\left(2\frac{3}{7}+7\frac{1}{4}\right)=17\frac{1}{4}-2\frac{3}{7}-7\frac{1}{4}=\left(17\frac{1}{4}-7\frac{1}{4}\right)-2\frac{3}{7}=10-\frac{17}{7}=\frac{53}{7}\)

d) D = \(\left(11\frac{5}{17}+3\frac{5}{7}\right)-4\frac{5}{17}=11\frac{5}{17}+3\frac{5}{7}-4\frac{5}{17}=\left(11\frac{5}{17}-4\frac{5}{17}\right)+3\frac{5}{7}=7+\frac{26}{7}=\frac{75}{7}\)

Đặt a/b=c/d=k

=>a=bk;c=dk

\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}=\dfrac{ab}{cd}\)