Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
không cần giỏi cũng giải được mà. cứ giải đi không cần biết đúng hay sai là được
THẾ LÀ GIỎI RÙI
nhưng mình nghĩ mãi không ra nếu bạn nói được như vậy thì thử giải giúp mình xem
a) a > b
⇒ 2a > 2b (nhân hai vế với 2 > 0)
⇒ 2a - 3 > 2b - 3 (cộng hai vế với -3)
b) a < b
⇒ -3a > -3b (nhân hai vế với -3 < 0)
⇒ -3a + 2 > -3b + 2 (1) (cộng hai vế với 2)
5 > 2
⇒ -3a + 5 > -3a + 2 (2) (cộng hai vế với -3a)
Từ (1) và (2) ⇒ -3a + 5 > -3b + 2
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}\ge\dfrac{4}{a+2b+c}\)
\(\dfrac{1}{a+b}+\dfrac{1}{a+c}\ge\dfrac{4}{2a+b+c}\)
\(\dfrac{1}{a+c}+\dfrac{1}{b+c}\ge\dfrac{4}{a+b+2c}\)
\(\Rightarrow2\dfrac{1}{a+b}+2\dfrac{1}{b+c}+2\dfrac{1}{a+c}\ge\dfrac{4}{2a+b+c}+\dfrac{4}{a+2b+c}+\dfrac{4}{a+b+2c}\)
\(\Leftrightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\ge2\left(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\right)\left(ĐPCM\right)\)
Ta có a,b>0, áp dụng bất đẳng thức Cô - si cho hai số không âm:
chú ý: MÌNH DÙNG CHỮ v TƯỢNG TRƯNG CHO DẤU CĂN.
ta có : (1/a+1/b)/2>=v(1/a*1/b)
=>1/a + 1/b >= 2*1/v(a*b)
mà v(a*b)<=(a+b)/2
=> 2*1/v(a*b) >= 2*1/((a+b)/2) = 4(a+b)
=>1/a + 1/b >= 4(a+b) (đpcm).
Cmr: 1/(a+b) + 1/(a+c) + 1/(b+c)>=2(1/(2a+b+c) + 1/...
chú ý: MÌNH DÙNG CHỮ v TƯỢNG TRƯNG CHO DẤU CĂN.
ta cũng áp dụng bất đẳng thức cô si cho hai số không âm:
1/(a+b) + 1/(b+c) >=2*1/(v(a+b)*(a+c))
tương tự với 1/(a+b) + 1/(b+c) >= 2*1/(v(a+b)*(b+c))
tương tự với 1/(a+c) + 1/(b+c) >= 2*1/1/(v(a+c)*(b+c))
=>2(1/(a+b) + 1/(a+c) + 1/(b+c))>=2*[1/(v(a+b)*(a+c))+v(a+b)*(b+... (1)
mà v((a+b)*(a+c))<=(a+b+a+c)/2=(2a+b+c)
=>1v(a+b)*(a+c)>=2(2a+b+c)
tương tự ta có 1v(a+b)*(b+c)>=2(2b+a+c)
=> 1/[v(a+b)*(a+c))+v(a+b)*(b+c))+1/(v(a+b)... >=2[1/(2a+b+c) + 1/(2b+a+c) + 1/(2c+a+b)] (2)
Từ (1) và (2) ta suy ra điều phải chứng minh.
tương tự ta có 1v(a+c)*(b+c)>=2(2c+a+b)
Áp dụng bất đẳng thức có:
\(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{16}{a+a+b+c}=\frac{16}{2a+b+c}\)<=> \(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{16}{2a+b+c}\)
Tương tự: \(\frac{1}{a}+\frac{2}{b}+\frac{1}{c}\ge\frac{16}{a+2b+c}\) và \(\frac{1}{a}+\frac{1}{b}+\frac{2}{c}\ge\frac{16}{a+b+2c}\)
Cộng 2 vế với nhau ta được:
\(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{2}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{2}{c}\ge\frac{16}{2a+b+c}+\frac{16}{a+2b+c}+\frac{16}{a+b+2c}\)
<=> \(\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\ge16\left(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\right)\)
=> \(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(a^2+b^2+c^2+d^2+4\ge2\left(a+b+c+d\right)\)
\(a^2+b^2+c^2+d^2+4-2\left(a+b+c+d\right)\ge0\)
\(a^2+b^2+c^2+d^2+4-2a-2b-2c-2d\ge0\)
\(\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)+\left(d^2-2d+1\right)\ge0\)
\(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2+\left(d-1\right)^2\ge0\)
Bất đẳng thức trên đúng với mọi a; b; c; d
=> bất đẳng thức được chứng minh
c và d ở đâu vại:>
\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a^4-a^3b\right)-\left(ab^3-b^4\right)\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a^2+ab+b^2\right)\left(a-b\right)^2\ge0\)(đúng)
Đẳng thức xảy ra khi a= b
Ta có đpcm
Ta có \(a>b\)\(=>a+4>b+4\)
Nên bất đẳng thức b, là đúng