Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2=\left(a+b\right)^2-2ab=\left(-3\right)^2-2\cdot\left(-2\right)=9+4=13\)
\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=\left(-3\right)^3-3\cdot\left(-2\right)\cdot\left(-3\right)\)
\(=-27-18=-45\)
a = 2
b = 3
rồi tính ra nhé
ai k mình mình k lại cho
Bài 2:
\(a^2+b^2=\left(a+b\right)^2-2ab=5^2-2\cdot\left(-2\right)=9\)
\(\dfrac{1}{a^3}+\dfrac{1}{b^3}=\dfrac{a^3+b^3}{a^3b^3}=\dfrac{\left(a+b\right)^3-3ab\left(a+b\right)}{\left(ab\right)^3}\)
\(=\dfrac{5^3-3\cdot5\cdot\left(-2\right)}{\left(-2\right)^3}=\dfrac{125+30}{8}=\dfrac{155}{8}\)
\(a-b=-\sqrt{\left(a+b\right)^2-4ab}=-\sqrt{5^2-4\cdot\left(-2\right)}=-\sqrt{33}\)
\(N=\dfrac{\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3}{\left(ab\right)\left(bc\right)\left(ca\right)}\)
Đặt \(\left(ab;bc;ca\right)=\left(x;y;z\right)\Rightarrow x+y+z=0\Rightarrow N=\dfrac{x^3+y^3+z^3}{xyz}\)
\(N=\dfrac{x^3+y^3+z^3-3xyz+3xyz}{xyz}=\dfrac{\dfrac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]+3xyz}{xyz}=\dfrac{3xyz}{xyz}=3\)
Vì \(a+b=3\)
\(\Rightarrow\left(a+b\right)^2=9\)
\(\Leftrightarrow a^2+b^2+2ab=9\)
\(\Leftrightarrow a^2+b^2=7\)
Vì \(a+b=3\)
\(\Leftrightarrow\left(a+b\right)^3=27\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=27\)
\(\Leftrightarrow a^3+b^3=18\)
\(a^3-b^3=\left(a-b\right)^3+3ab\left(a-b\right)\)
\(=\left[\sqrt{\left(a+b\right)^2-4ab}\right]^3+3ab\sqrt{\left(a+b\right)^2-4ab}\)
\(=\sqrt{5^2-4\cdot\left(-2\right)}^3+3\cdot\left(-2\right)\cdot\sqrt{5^2-4\cdot\left(-2\right)}\)
\(=33\sqrt{33}+3\cdot\left(-2\right)\cdot\sqrt{33}\)
\(=27\sqrt{33}\)
1: (a-1)(a-3)(a-4)(a-6)+9
=(a^2-7a+6)(a^2-7a+12)+9
=(a^2-7a)^2+18(a^2-7a)+81
=(a^2-7a+9)^2>=0
b: \(A=\dfrac{a^4-4a^3+a^2+4a^3-16a+4+16a-3}{a^2}=\dfrac{16a-3}{a^2}\)
a^2-4a+1=0
=>a=2+căn 3 hoặc a=2-căn 3
=>A=11-4căn 3 hoặc a=11+4căn 3
Lời giải:
\(A=\frac{(bc)^3+(2ac)^3+(2ab)^3}{8a^2b^2c^2}=\frac{(bc)^3+(2ac+2ab)^3-3.2ac.2ab(2ac+2bc)}{8a^2b^2c^2}\)
\(=\frac{(bc)^3+(-bc)^3+12a^2b^2c^2}{8a^2b^2c^2}=\frac{12}{8}=1,5\)
\(\left(a+b\right)^2=a^2+2ab+b^2=9\\ \Leftrightarrow a^2+b^2-4=9\Leftrightarrow a^2+b^2=13\\ a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2=13^2-2\left(-2\right)^2=169-8=161\\ a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=-27-3\left(-2\right)\left(-3\right)=-27-18=-45\\ \Leftrightarrow\left(a^3+b^3\right)\left(a^2+b^2\right)=a^5+b^5+a^2b^2\left(a+b\right)=-45\cdot13=-585\\ \Leftrightarrow a^5+b^5+\left(-2\right)^2\left(-3\right)=-585\\ \Leftrightarrow a^5+b^5=-585+12=-573\\ \left(a^5+b^5\right)\left(a^2+b^2\right)=a^7+b^7+a^2b^2\left(a^3+b^3\right)=-573\cdot13=-7449\\ \Leftrightarrow a^7+b^7+\left(-2\right)^2\left(-45\right)=-7449\\ \Leftrightarrow a^7+b^7-180=-7749\\ \Leftrightarrow a^7+b^7=-7569\)