K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAC vuông tại A và ΔBMA vuông tại M có

góc B chung

=>ΔBAC đồng dạng với ΔBMA

b: Xét ΔBMH vuông tại M và ΔBKC vuông tại K có

góc MBH chung

=>ΔBMH đồng dạng với ΔBKC

=>BM/BK=BH/BC

=>BM*BC=BK*BH

c: 

góc AMB=góc AIB=90 độ

=>ABMI nội tiếp

=>góc AIM=180 độ-góc ABC

góc AIK+góc ATK=90 độ+90 độ=180 độ

=>AIKT nội tiếp

=>góc AIT=góc AKT

góc BAC=góc BKC=90 độ

=>BAKC nội tiếp

=>góc ABC+góc AKC=180 độ

=>góc ABC=góc AKY=góc AIT

góc MIT=góc AIM+góc AIT

=180 độ-góc ABC+góc ABC

=180 độ

=>M,I,T thẳng hàng

31 tháng 3 2023

giúp mình với các bạn mình đang cần gấp ạ

 

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

CD là phângíac

=>AD/AC=DB/CB

=>AD/3=DB/5=(AD+DB)/(3+5)=8/8=1

=>AD=3cm; BD=5cm

a: Xet ΔABC vuông tại A và ΔHBA vuôngtại H có

góc B chung

=>ΔABC đồng dạngvới ΔHBA

b: Xet ΔCHM vuông tại H và ΔCKB vuông tại K có

góc HCM chung

=>ΔCHM đồng dạngvới ΔCKB

=>CH/CK=CM/CB

=>CH*CB=CK*CM

c: Xét ΔBHD vuông tại H và ΔBKC vuông tại K có

goc HBD chung

=>ΔBHD đồng dạng với ΔBKC

=>BH/BK=BD/BC

=>BH/BD=BK/BC

=>ΔBHK đồng dạng vơi ΔBDC
=>góc BKH=góc BCD

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0
29 tháng 4 2022

help

a: Xét tứ giác ADME có 

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

Do đó: ADME là hình chữ nhật

b: Xét ΔABC có

M là trung điểm của BC

ME//AB

Do đó: E là trung điểm của AC

c: Xét tứ giác AMCN có 

E là trung điểm của AC
E là trung điểm của MN

Do đó: AMCN là hình bình hành

mà MA=MC

nên AMCN là hình thoi

30 tháng 5 2018

a)  F H A ^ = H A K ^ = A K F ^ = 90 0

Þ AHFK là hình chữ nhật.

b) Gọi là giao điểm của AC và BD. Chứng minh OE là đường trung bình của DACF

Þ AF//OE

Þ AF/BD

c) Gọi I là giao điểm của AF và HK.

Chứng minh

H 1 ^ = A ^ 1 ( H 1 ^ = A 2 ^ = B 1 ^ = A 1 ^ ) ⇒ K H / / A C  mà KH đi qua trung điểm I của AF Þ KH đi qua trung điểm của FC.

Mà E là trung điểm của FC Þ K, H, E thẳng hàng