Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+)A=2^1+2^2+2^3+2^4+...+2^2010
=>A=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^2009+2^2010)
=>A=6+2^2.(2+2^2)+2^4.(2+2^2)+...+2^2008(2+2^2)
=>A=6+2^2.6+2^4.6+...+2^2008.6
=>A=6.(1+2^2+2^4+...+2^2008)
=>A=3.2.(1+2^2+2^4+...+2^2008)
=>A chia hết cho 3
A=2+2^2+2^3+2^4+...+2^2010
A=(2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)+...+(2^2008+2^2009+2^2010)
A=2.(1+1+2^2)+2^4(1+2+2^2)+2^7.(1+2+2^4)+...+2^2008.(1+2+2^2)
A=2.7+2^4.7+2^7.7+...+2^2008.7
A=7.(2+2^4+2^7+...+2^2008)
=> A chia hết cho 7
các phần khác làm tương tự
A = 21 + 22 + 23 + 24 + .... + 22009 + 22010
=> A = ( 21 + 22 ) + ( 23 + 24 ) + .... + ( 22009 + 22010 )
=> A = 21.( 1 + 2 ) + 23.( 1 + 2 ) + .... + 22009.( 1 + 2 )
=> A = 21.3 + 23.3 + .... + 22009.3
=> A = 3.( 21 + 23 + .... + 22009 )
Vì 3 ⋮ 3 => A ⋮ 3 ( đpcm )
A = 21 + 22 + 23 + 24 + 25 + 26 + .... + 22007 + 22008 + 22009
=> A = ( 21 + 22 + 23 ) + ( 24 + 25 + 26 ) + .... + ( 22007 + 22008 + 22009 )
=> A = 21.( 1 + 2 + 2.2 ) + 24.( 1 + 2 + 2.2 ) + .... + 22007.( 1 + 2 + 2.2 )
=> A = 21.7 + 24.7 + .... + 22007.7
=> A = 7.( 21 + 24 + .... + 22007 )
Vì 7 ⋮ 7 => A ⋮ 7 ( đpcm )
Các ý sau tương tự .
A=(2^1+2^2+2^3+2^4+2^5+2^6)+................+(2^2005+2^2006+2^2007+2^2008+2^2009+2^2010)
A=2^1(1+2+2^2+2^3+2^4+2^5)+...................+2^2005(1+2+2^2+2^3+2^4+2^5)
A=2.63+......................+2^2005.63
A=63.(2+..............................+2^2005)
VÌ 63 CHIA HẾT CHO 3 VÀ 7 VẬY A CHIA HẾT CHO 3 VÀ 7.
TICK CHO MÌNH NHA
A=(21+22+23+24+25+26) + . . . + (22005+22006+22007+22008+22009+22010)
A=2^1(1+2+22+23+24+25)+...................+22005(1+2+22+23+24+25)
A=2.63+......................+22005.63
A=63.(2+..............................+22005)
VÌ 63 CHIA HẾT CHO 3 VÀ 7 VẬY A CHIA HẾT CHO 3 VÀ 7.
D=(7+7^2)+(7^3+7^4)+...+(7^2009+7^2010)
D=7.(1+7)+7^3.(1+7)+...+7^2009.(1+7)
D=8.(7+7^3+...+7^2009)
=> D chia hết cho 8
D=(7+7^2+7^3)+(7^4+7^5+7^6)+...+(7^2008+7^2009+7^2010)
D=7.(1+7+49)+7^4.(1+7+49)+...+7^2008.(1+7+49)
D=57.(7+7^4+...+7^2008)
=> D chia hết cho 57
chúc bạn học tốt nha
nhớ ủng hộ mk với nha
a) A=2^1+2^2+2^3+...+2^2010
A=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)
A=2.(1+2)+2^3 . (1+2)+...+2^2009.(1+2)
A=3.(2+2^3+2^5+...+2^2009)
=> A chia hết cho 3
A=(2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^2008+2^2009+2010)
A=2.(1+2+4)+2^4.(1+2+4)+...+2^2008.(1+2+4)
A=7.(2+2^4+...+2^2008)
=> A chia hết cho 7
bạn ghi câu hỏi tách nhau ra thành 4 câu khác nhau đi mk trả lời cho ko thì dài lắm
Có : A = (3+3^3+3^3)+(3^4+3^5+3^6)+.....+(3^98+3^99+3^100)
= 3.(1+3+3^2)+3^4.(1+3+3^2)+.....+3^98.(1+3+3^2)
= 3.13+3^4.13+.....+3^98.13
= 13.(3+3^4+....+3^98) chia hết cho 13
=> ĐPCM
k mk nha
\(A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^7\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right)\left(3+3^4+3^7\right)=13\left(3+3^4+3^7\right)⋮13\) (đpcm)
Lời giải:
Ta có:
\(A=(3+3^2+3^3)+(3^4+3^5+3^6)+(3^7+3^8+3^9)\)
\(=(3.1+3.3+3.9)+(3^4.1+3^4.3+3^4.9)+(3^7.1+3^7.3+3^7.9)\)
\(=3.(1+3+9)+3^4\left(1+3+9\right)+3^7.\left(1+3+9\right)\)
\(=3.13+3^4.13+3^7.13\)
\(=13.(3+3^4+3^7)\) ⋮ 13 . Vậy: A ⋮ 13
Chúc bạn học tốt!Tick cho mình nhé!
Mẫu câu a)!! những câu khác ko lm đc ib!
a) Ta có:
\(A=2+2^2+2^3+2^4+...+2^{2010}.\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{2009}.3\)
\(=3\left(2+2^3+...+2^{2009}\right)⋮3\)
Ta có:
\(A=2+2^2+2^3+2^4+...+2^{2010}\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(=2.7+2^4.7+...+2^{2008}.7\)
\(=7\left(2+2^4+...+2^{2008}\right)⋮7\)
b,\(B=3+3^2+3^3+3^4+...+3^{2010}.\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
\(=3.4+3^3.4+...+3^{2009}.4\)
\(=4.\left(3+3^3+...+3^{2009}\right)⋮4\)
\(B=3+3^2+3^3+3^4+...+3^{2010}\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)
\(=3.13+3^4.13+...+3^{2008}.13\)
\(=13\left(3+3^4+...+3^{2008}\right)⋮13\)
Ta có:
\(A=3+3^2+3^3+3^4+3^5+3^6\)
\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)\)
\(A=39+3^3.\left(3+3^2+3^3\right)\)
\(A=39+3^3.39\)
\(A=39.\left(1+3^3\right)\)
Vì \(39⋮13\) nên \(39.\left(1+3^3\right)⋮13\)
Vậy \(A⋮13\)
\(#WendyDang\)
Lời giải:
$A=(3+3^2+3^3)+(3^4+3^5+3^6)$
$=3(1+3+3^2)+3^4(1+3+3^2)=(1+3+3^2)(3+3^4)=13(3+3^4)\vdots 13$
Ta có đpcm.