K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
6 tháng 8 2019
Ta có : \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
= \(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0\)
=> \(\frac{bz-cy}{a}=0\)nên bz - cy = 0 => bz = cy.Hay b/y = c/z [1]
=> \(\frac{cx-az}{b}=0\)nên cx - az = 0 => cx = az . Hay c/z = a/x [2]
Từ 1 và 2 => \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
VM
6 tháng 8 2019
Chúc bạn học tốt!
Bạn tham khảo tại đây nhé:
Câu hỏi của Hann Hann - Toán lớp 7 - Học toán với OnlineMath
Có: \(\frac{a}{3}=\frac{3}{b}=\frac{b}{a}\)
\(\Leftrightarrow\hept{\begin{cases}ab=9\\a^2=3b\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=\frac{9}{b}\\\frac{81}{b^2}=3b\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=\frac{9}{b}\\27=b^3\end{cases}}\)
\(\Leftrightarrow a=b=3\)