Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho thêm cái \(a^2+b^2+c^2=1\) là ez rồi
\(a+b+c=1\Leftrightarrow\left[\left(a+b\right)+c\right]^3=1\)
\(\Leftrightarrow\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3=1\)
\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3+3\left(a^2+2ab+b^2\right)c+3ac^2+3bc^2+c^3=1\)
\(\Leftrightarrow\left(a^3+b^3+c^3\right)+3\left(a^2b+ab^2+a^2c+2abc+b^2c+ac^2+bc^2\right)=1\)
\(\Leftrightarrow a^2b+ab^2+a^2c+abc+abc+b^2c+ac^2+bc^2=0\)
\(\Leftrightarrow ab\left(a+b\right)+ac\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)=0\)
\(\Leftrightarrow\left(ab+ac+bc+c^2\right)\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)
Xét \(a=-b\). Ta có theo đề bài \(a+b+c=1\Leftrightarrow c=1\)
\(a=-b\Leftrightarrow a^{1981}=-b^{1981}\)
\(S=a^{1981}+b^{1981}+c^{1981}=c^{1981}=1^{1981}=1\)
(1981 x 1982 - 990) : (1980 x 1982 + 992)
=(1980 x 1982+1982 -990) : (1980 x 1982 +992)
=(1980 x 1982 + 992) : ( 1980 x 1982 + 992)
=1
2. Tìm x:
( x - 3 )2 - x + 3 = 0
=> x2 - 6x + 9 - x + 3 = 0
=> x2 - 7x + 12 = 0
=> ( x2 - 3x ) + ( 4x - 12 ) = 0
=> x.(x - 3) + 4.(x - 3) = 0
=> ( x - 3 ).( x + 4 ) = 0
=> x - 3 = 0 => x = 3
x + 4 = 0 => x = -4
Trl:
1.
a. \(75^2+150\text{.}25+25^2\)
\(=75^2+2\text{.}75\text{.}25+25^2\)
\(=\left(75+25\right)^2\)
\(=100^2\)
\(=10000\)
b. \(2019^2-2019.19-19^2-19.1981\)
(Đề bài có sai ko vậy???)~ hoặc lak do mk ngu quá k bt lm
2. \(\left(\text{x}-3\right)^2-\text{x}+3=0\)
\(\text{x}^2-6\text{x}+9-\text{x}+3=0\)
\(\text{x}^2-7\text{x}+12=0\)
\(\text{x}^2-3\text{x}-4\text{x}+12=0\)
\(\text{x}\left(\text{x}-3\right)-4\left(\text{x}-3\right)=0\)
\(\left(\text{x}-3\right)\left(\text{x}-4\right)=0\)
\(\orbr{\begin{cases}\text{x}-3=0\\\text{x}-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\text{x}=3\\\text{x}=4\end{cases}}}\)
Vậy ....
#HuyềnAnh#
\(\frac{1981^2-1980^2}{1981^2+1980^2}\)
\(=\frac{\left(1981-1980\right)\left(1981+1980\right)}{1981^2+1980^2}\)
\(>\frac{\left(1981-1980\right)\left(1981+1980\right)}{1981^2+2.1981.1980+1980^2}\)
\(=\frac{\left(1981-1980\right)\left(1981+1980\right)}{\left(1981+1980\right)^2}=\frac{1981-1980}{\left(1981+1980\right)}\)
Bài 1:
\(a^2+b^2+c^2=16\Rightarrow\left(a+b+c\right)^2-2ab-2bc-2ac=16\)\(\Leftrightarrow-2\left(ab+bc+ac\right)=16\Rightarrow ab+bc+ac=-8\)\(\Rightarrow\left(ab+bc+ac\right)^2=64\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=64\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=64\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=64\)
Ta có:
\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2a^2b^2-2b^2c^2-2a^2c^2\)\(=16^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)=256-2.64=128\)
cái này lớp 12 thì giải oke, còn lp 8 thì ko có a thoả mãn GT
\(a^2+a+1=0\Leftrightarrow\left(a+\frac{1}{2}\right)^2+\frac{3}{4}=0\)(vô lý)
vậy ko có a nào thỏa mãn điều kiện