Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Gọi số cần tìm là ab1 trong đó a,b là các chữ số, a \(\ne\)0.
Theo đề bài ta có:
ab1 - 1ab= 36
(ab x 10 + 1) - (100 + ab) = 36
ab x 9 - 99 = 36
ab x 9 = 36 + 99 = 135
ab = 135 : 9 = 15
Vậy số cần tìm là 151.
Đáp số: 151
Bài 2: (sorry, mình ko hiểu đề lắm)
Bài 3:
5ab + 3cd = 836
500 + ab + 300 + cd = 836
\(\Rightarrow\)ab + cd = 836 - (500 + 300) = 36
Ta có sơ đồ:
ab /................................./................................./ 36
cd /................................./
cd = 36 : (1 + 2) = 12
ab = 12 x 2 = 24
Vậy 2 số cần tìm là 524 và 312.
Gọi số tự nhiên lớn nhất cần tìm là abcd. Ta có :
abcd + abc + ab + a = 2013
1111 x a + 111 x b + 11 x c + d = 2013
Vì a khác 0 và < 2 (Vì nếu a = 2 thì 1111 x 2 = 2222 > 2013) => a = 1
Vậy 111 x b + 11 x c + d = 2013 - 1111
111 x b + 11 x c + d = 902
11 x c + d lớn nhất = 108 => 111 x b nhỏ nhất = 902 - 108 = 794 => b nhỏ nhất = 8)
Mặt khác 11 x c + d nhỏ nhất = 0 => 111 x b lớn nhất = 902. Vậy b lớn nhất = 8)
Vậy b = 8
=> 11 x c + d = 902 - 111 x 8
=> 11 x c + d = 14.
=> c = 1 và d = 3
Ta có 4 số lần lượt là : 1813 ; 181 ; 18 và 1
A=\(17^{2008}-11^{2008}-3^{2008}\)
A=\(\left(17^4\right)^{502}-11^{2008}-\left(3^4\right)^{502}\)
A=\(83521^{502}-11^{2008}-81^{502}\)
A=\(\left(......1\right)-\left(.......1\right)-\left(........1\right)\)
A=\(\left(.........9\right)\)
Vậy A có chữ số tận cùng là 9
2)M=\(17^{25}+24^4-13^{21}\)
M=\(17^{24}\cdot17+\left(24^2\right)^2-13^{20}\cdot13\)
M=\(\left(17^4\right)^6\cdot17+576^2-\left(13^4\right)^5\cdot13\)
M=\(83521^6\cdot17+\left(......6\right)-28561^5\cdot13\)
M=\(\left(.......1\right)\cdot17+\left(........6\right)-\left(.........1\right)\cdot13\)
M=\(\left(........7\right)+\left(..........6\right)-\left(...........3\right)\)
M=\(\left(...........0\right)⋮10\)
Vậy M\(⋮10\)
gọi số cần tìm la ab(0<a=<9, 0<= b<=9) ab có gạch ngang trên đầu nha
theo đề bài ta có:
a+b+a*b= ab
<=> a+b+a*b = a*10 + b
<=> a*b=a*9( trừ cả 2 vế cho b và a)
<=> b=9
vậy chữ số hàng đơn vị là 9
\(A=2+2^2+2^3+...+2^{2024}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{2021}+2^{2022}+2^{2023}+2^{2024}\right)\)
\(=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)+...+2^{2020}\left(2+2^2+2^3+2^4\right)\)
\(=30\left(1+2^4+...+2^{2020}\right)⋮10\)
=>Chữ số hàng đơn vị của A là 0
Lời giải:
$A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+....+(2^{2021}+2^{2022}+2^{2023}+2^{2024})$
$=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+....+2^{2021}(1+2+2^2+2^3)$
$=(1+2+2^2+2^3)(2+2^5+...+2^{2021})$
$=15(2+2^5+...+2^{2021})\vdots 15\vdots 5$
Hiển nhiên $A$ cũng chia hết cho 2
$\Rightarrow A\vdots 2; 5\Rightarrow A\vdots 10$
$\Rightarrow A$ tận cùng là $0$