K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2020

giúp mk với ạ ai giải nhanh nất và đúng mk cho 5 sao

31 tháng 10 2020

bạn tải app : qanda , bạn chụp hình thì bất kì bài nào  ''Qanda'' cũng giải đc nhé !

11 tháng 5 2022

mikko biết

 

4 tháng 4 2021

\(A=5+4^2+...+4^{2021}\\ A=4^0+4^1+...+4^{2021}\\ 4A=4^1+4^2+...+4^{2022}\\ 4A-A=\left(4^1+4^2+...+4^{2022}\right)-\left(4^0+4^1+...+4^{2021}\right)\\ 3A=4^{2022}-1\\ 3A+1=4^{2022}⋮4^{2021}\)

AH
Akai Haruma
Giáo viên
13 tháng 5 2023

Lời giải:
$A-1=4+4^2+4^3+...+4^{2020}+4^{2021}$
$4(A-1)=4^2+4^3+4^4+....+4^{2021}+4^{2022}$

$\Rightarrow 4(A-1)-(A-1)=4^{2022}-4$

$3(A-1)=4^{2022}-4$

$\Rightarrow 3A+1=4^{2022}\vdots 4^{2021}$ 

 

24 tháng 10 2021

\(A=1+2+2^2+2^3+...+2^{2021}\)

\(=7+2^3\cdot7+...+2^{2019}\cdot7\)

\(=7\left(1+...+2^{2019}\right)⋮7\)

24 tháng 10 2021

bạn có thể lm rõ hơn đc ko , mk cũng ko hiểu lắm ấy , nhưng dù dì thì mình cx cảm ơn bạn nhé

26 tháng 8 2020

\(7a+2b⋮2021;31a+9b⋮2021\)

\(\Rightarrow\hept{\begin{cases}9\left(7a+2b\right)-2\left(31a+9b\right)⋮2021\\31\left(7a+2b\right)-7\left(31a+9b\right)⋮2021\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a⋮2021\\-b⋮2021\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a⋮2021\\b⋮2021\end{cases}}\) (đpcm)

29 tháng 11 2021

A=(1+3+32)+(33+34+35)+...+(32019+32020+32021)                                                  A=(1+3+32)+33.(1+3+32)+...+32019.(1+3+32)

A=13+33.13+...+32019.13

A=13.(1+33+...+32019)chia hết cho 13

=>A  chia hết cho 13

 

12 tháng 11 2021

Chứng minh rằng: A = 3^2 + 3^3 + 3^4 + 3^5 + … + 3^2020 + 3^2021 chia hết cho 36 - Hoc24

12 tháng 11 2021

\(A=\left(3^2+3^3\right)+3^2\left(3^2+3^3\right)+...+3^{2018}\left(3^2+3^3\right)\)

\(=36+3^2.36+...+3^{2018}.36=36\left(1+3^2+...+3^{2018}\right)⋮36\)

12 tháng 11 2021

\(A=\left(3^2+3^3\right)+\left(3^4+3^5\right)+...+\left(3^{2020}+3^{2021}\right)\\ A=\left(3^2+3^3\right)+3^2\left(3^2+3^3\right)+...+3^{2018}\left(3^2+3^3\right)\\ A=\left(3^2+3^3\right)\left(1+3^2+...+3^{2018}\right)\\ A=36\left(1+3^2+...+3^{2018}\right)⋮36\)

12 tháng 11 2021

Anh là ân nhân cứu mạng của em :33