K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2016

giúp mk vs mn ơi

8 tháng 2 2020

nếu n=3 thì đúng

nếu n khác 3 thì n^2 + 2 chia hết cho 3 và>3 nên ko là số nguyên tố làm v đi

8 tháng 2 2020

Nếu \(n>3\) mà \(n\) nguyên tố nên \(n\) chia 3 dư 1 hoặc 2 \(\Rightarrow n=3k\pm1\left(k\inℕ^∗\right)\)

Khi đó : \(n^2+2=\left(3k\pm1\right)^2+2=9k^2\pm3k+3⋮3\)

Điều này trái với giả thiết.

Vì vậy \(n=3\). Thử lại ta thấy đúng : \(\hept{\begin{cases}n=3\\n^2+2=11\\n^3+2=29\end{cases}}\) ( đpcm )

29 tháng 7 2015

neu p khong chia het cho 3 thi pchia 3 du 1 suy ra p2 +8 chia het cho 3 (trai gia thiet p2 +8 nguyen to)

vay p phai chia het cho 3, ma p nguyen to nen p=3 . suy ra p2 +2=11 la so nguyen to

tuong tu, o cau b ta cung cm duoc p=3

16 tháng 6 2018

\(a^3+a^2c-abc+b^2c+b^3\)

\(=\left(a^3+b^3\right)+\left(a^2c+b^2c-abc\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+\)\(c\left(a^2+b^2-ab\right)\)

\(=\left(a^2+b^2-ab\right)\left(a+b+c\right)\)

16 tháng 6 2018

thank bn

2 tháng 4 2018

  zdvdz

16 tháng 6 2018

a) a3+a2c-abc+b2c+b=(a3+b3)+(a2c-abc+b2c)=(a+b)(a2-ab+b2)+c(a2-ab+b2)=(a2-ab+b2)(a+b-c)

b) x3-7x-6 = x3+x2-x2-x-6x-6=x2(x+1)-x(x+1)-6(x+1)=(x+1)(x2-x-6)=(x+1)(x-3)(x+2)

c) x3-x2-14x+24=x3-2x2+x2-2x-12x+24=x2(x-2)+x(x-2)-12(x-2)=(x-2)(x2+x-12)=(x-2)(x+4)(x-3)

17 tháng 6 2018

Thank bn. 

14 tháng 2 2018

Đối với lớp 8 cái này khó; giải theo cách bình thường nha

+) Giả sử \(abc\) không chia hết cho 3 \(\Rightarrow a;b;c\) không chia hết cho 3

\(\Rightarrow a^2;b^2;c^2\)chia 3 dư 1 \(\Rightarrow a^2+b^2\)  chia 3 dư 2

Mà \(c^2\) chia 3 dư 1 nên \(a^2+b^2\ne c^2\) => Điều giả sử sai

Vậy \(abc⋮3\) (1)

+) Giả sử  \(abc\) không chia hết cho 4 \(\Rightarrow a;b;c\) không chia hết cho 4

\(\Rightarrow\)\(a^2;b^2;c^2\)chia 4 dư 1 \(\Rightarrow a^2+b^2\) chia 4 dư 2

Mà \(c^2\)chia 4 dư 1 nên \(a^2+b^2\ne c^2\)=> Điều giả sử sai

Vậy \(abc⋮4\)(2)

+) +) Giả sử  \(abc\) không chia hết cho 5 \(\Rightarrow a;b;c\) không chia hết cho 5

\(\Rightarrow a^2;b^2;c^2\) chia 5 dư 1;4 \(\Rightarrow a^2+b^2\) chia hết cho 5

Mà \(c^2\)chia 5 dư 1;4 nên \(a^2+b^2\ne c^2\) => Điều giả sử sai

Vậy \(abc⋮5\)(3)

Mà (3;4;5) = 1 nên từ (1);(2);(3) \(\Rightarrow abc⋮60\)(đpcm)

14 tháng 2 2018

Ta có;  60 = 3.4.5

Đặt M = abc

Nếu a, b, c đều không chia hết cho 3 => a2, b2 và cchia hết cho 3 đều dư 1=> a2 khác  b+ c2 .Do đó có ít nhất 1 số chia hết cho 3. Vậy M  \(⋮\)3

Nếu a, b, c đều không chia hết cho 5 =>  a2, b2 và c2 chia 5 dư 1 hoặc 4

=>  b2 + c2 chia 5 thì dư 2; 0 hoặc 3.

=> a2 khác  b2 + c2. Do đó có ít nhất 1 số chia hết cho 5. Vậy M \(⋮\) 5

Nếu a, b, c là các số lẻ =>  b2 và c2 chia hết cho 4 dư 1.

=>  b2 + c2 = 4 dư 1 =>  a2 khác b2 + c2

Do đó 1 trong 2 số a, b phải là số chẵn

Giả sử b là số chẵn

Nếu c là số chẵn =>  M  \(⋮\) 4

Nếu c là số lẻ mà a2 = b2 + c2 =>  a là số lẻ

\(\Rightarrow b^2=\left(a-c\right)\left(a+b\right)\Rightarrow\left(\frac{b}{2}\right)^2=\left(\frac{a+c}{2}\right)\left(\frac{a-c}{2}\right)\)

\(\Rightarrow\frac{b}{2}\)chẵn \(\Rightarrow b⋮4\Rightarrow M⋮4\)

Vậy M = abc \(⋮\)3 . 4. 5 = 60