K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

Ta có:

\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}< \frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}\)

Mà \(\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{1}{4}.4=1\)

=>\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}< 1\) (1)

\(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\)Mà \(\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{8}.8=1\) 

=> \(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< 1\)   (2)

Từ (1) và (2)

=> A=\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+...+\frac{1}{14}+\frac{1}{15}< 1+1\)

=> A<2

 

 

17 tháng 8 2016

ê bài này ở đâu tek

3 tháng 8 2015

a, \(\frac{-3}{7}+\frac{5}{13}-\frac{4}{7}+\frac{8}{13}\)

\(=\frac{-3}{7}-\frac{4}{7}+\frac{5}{13}+\frac{8}{13}\)

\(=-\frac{7}{7}+\frac{13}{13}=-1+1=0\)

b, \(\frac{-5}{14}-\frac{2}{-14}+\frac{1}{8}+\frac{1}{8}\)

\(=\frac{-5}{14}+\frac{2}{14}+\frac{1}{8}+\frac{1}{8}\)

\(=-\frac{3}{14}+\frac{1}{4}=\frac{1}{28}\)

c,\(-\frac{5}{13}-\left(\frac{3}{5}+\frac{3}{13}-\frac{4}{10}\right)\)

\(=-\frac{5}{13}-\frac{3}{13}-\frac{3}{5}+\frac{4}{10}\)

\(=-\frac{8}{13}-\frac{3}{5}+\frac{4}{10}=-\frac{79}{65}+\frac{4}{10}=-\frac{53}{65}\)

d, \(\left[\left(\frac{1}{8}-\frac{9}{7}+\frac{4}{6}-\frac{12}{7}-\frac{1}{2}\right)+\frac{5}{9}\right]\)

\(=\left[\left(\frac{1}{8}-\frac{9}{7}+\frac{2}{3}-\frac{12}{7}-\frac{1}{2}\right)+\frac{5}{9}\right]\)

\(=\left[\left(\frac{1}{8}-\frac{1}{2}-\frac{9}{7}-\frac{12}{7}+\frac{2}{3}\right)+\frac{5}{9}\right]\)

\(=-\frac{65}{24}+\frac{5}{9}=-2\frac{11}{72}\)

 

7 tháng 10

a)-3/7+5/13-4/7+8/13

=-3/7-4/7+5/13+8/13

=-7/7+13/13

=-1+1

=0

26 tháng 7 2019

Lời giải:

a, Ta có: \(A=\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+...+\frac{1}{22}>\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+...+\frac{1}{22}=\frac{1}{22}.11=\frac{11}{22}=\frac{1}{2}\)

Vậy: \(A>\frac{1}{2}\)

b, Ta có: \(B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{99}+\frac{1}{100}\)

\(=\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{49}+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right)\)

Mà: \(\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{49}+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}\right)\text{​​}\text{​​}\text{​​}>\left(\frac{1}{50}+...+\frac{1}{50}+\frac{1}{50}\right)+\left(\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\right)\)

=> \(B\text{​​}\text{​​}\text{​​}>\frac{1}{50}.41+\frac{1}{100}.50=\frac{41+25}{50}=\frac{33}{25}>1\)

Vậy: \(B>1\)

c, Ta có: \(C=\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{16}+\frac{1}{17}< \frac{1}{5}+\frac{1}{6}+\left(\frac{1}{7}+...+\frac{1}{7}+\frac{1}{7}\right)=\frac{11}{30}+11.\frac{1}{7}=\frac{407}{210}< \frac{420}{210}=2\)

Vậy: \(C< 2\)

hahaChúc bạn học tốt!hihaTick cho mình nhé!eoeo

28 tháng 6 2016

Thank you very much !!!!

23 tháng 6 2019

\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=\left(1+\frac{1}{3}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right).\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\right)\)\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)

\(A=\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{35}\right)+\left(\frac{1}{36}+...+\frac{1}{50}\right)>\frac{1}{35}.10+\frac{1}{50}.15=\frac{41}{70}>\frac{7}{12}\)

\(A< \frac{10}{26}+\frac{15}{36}< \frac{5}{6}\) Vậy ....